Analysis of Single Pion Electroproduction data from CLAS

Inna Aznauryan Volker Burkert Hovanes Egiyan

- Physics Motivation
- CLAS data
- JANR program
- Results of the Analysis
- Conclusions and Summary

Subject of the Talk

- Used CLAS data on cross sections and Single Spin Asymmetry (SSA) for π⁺ and π⁰ electroproduction at Q²=0.4 GeV², W<1.6 GeV.
- Fit the data with JANR program, based on the Unitary Isobar Model to extract photon-coupling amplitudes for P₁₁(1440), S₁₁(1535) and D₁₃(1535).
- Compare the results with the results from the DASPE program, which is a Dispersion Relation based analysis program.
- Comparison of the two results allows us to have an rough estimate of the model dependencies of the obtained parameters.

P₁₁(1440) Transition Amplitudes

P₁₁(1440) can be either q³, q³M or q³G state (radial, meson cloud around 3-quark core or spin-flavor excitation?).

Existing data does not allow to determine the nature of $P_{11}(1440)$ state.

For q^3G state $S_{1/2}$ is predicted to be 0.

Different Q^2 dependence for transverse photocoupling for different models of $P_{11}(1440)$:

$$\frac{A_{\frac{1}{2}}(P^{G}_{11})}{A_{\frac{1}{2}}(P_{11})} \sim \frac{1}{\vec{Q}^{2}}$$

Amplitudes for S₁₁(1535) and D₁₃(1520) Resonances

For $D_{13}(1535)$ a transition from $A_1 = -1$ to $A_1 = 1$ is expected as $Q^2 \rightarrow \infty$.

Independent measurements of $A_{1/2}$ for $S_{11}(1535)$ via π^+ channel are needed.

CLAS Experiment

- The present experiment E-89-038 (V. Burkert, R. Minehart) is a part of the e1 run group, which includes 15 different experiments.
- Data were taken with 1.5 and 1.6 GeV electron beam incident on unpolarized LH₂ target at luminosities $-3 \times 10^{33} cm^{-2} s^{-1}$.
- Measured absolute cross sections and beam single spin asymmetries for both $(p\pi^0)$ and $(n\pi^+)$ channels.
- Total 500M triggers collected and written to tape, occupying over 2Tbyte space.
- Raw data were corrected for the geometrical acceptance and efficiency, as well as for the binning effects and the empty target cell contributions.
- Radiative corrections are applied to obtain the radiatively corrected cross sections.
- The combined statistical and systematic errors for dominating π^+ data set was ~10%.
- This combined analysis was done at Q²=0.4 GeV².

Coverage for π^+ Cross Sections

Variable Name	Lowest Value	Highest Value	Number of Bins	Bin Size
Q^2 , $(GeV/c)^2$	0.25	0.65	4	0.1
W, GeV/c ²	1.1	1.6	25	0.02
θ*, deg	0	180	12	15
φ*, deg	0	360	12	30

Main Contributing Diagrams

Kinematics of the reaction

$$\frac{d^{5}\sigma}{dE'd\Omega_{e}d\Omega^{*}_{\pi}} = \Gamma_{t}\frac{d\sigma}{d\Omega^{*}_{\pi}}(\theta,\phi,\varepsilon,W,Q^{2})$$

$$\frac{d\sigma}{d\Omega^*_{\pi}} = \sigma_T + \varepsilon\sigma_L + \varepsilon\sigma_{TT}\cos 2\phi + \sqrt{\frac{\varepsilon(1+\varepsilon)}{2}}\sigma_{TL}\cos\phi + \hbar\sqrt{\frac{\varepsilon(1-\varepsilon)}{2}}\sigma_{TL}'\sin\phi$$

JLab Analysis of Nucleon Resonances (JANR) Program

- Program developed at JLab to analyze pion electroproduction data (I. Aznauryan).
- Based on the Unitary Isobar Model
- Includes all resonances which have been seen in photoproduction PWA.
- Breit-Wigner for resonant amplitudes:

$$A_{l\pm}\left(W\right) = a_{l\pm} \left(\frac{q_r k_r}{q} \frac{\Gamma_{\pi} \Gamma_{\gamma}}{k}\right)^{\frac{1}{2}} \frac{M\Gamma}{M^2 - W^2 - iM\Gamma_{tot}}, \text{ where } a_{l\pm} \text{ are }$$
 the fit parameters for fixed Q^2 .

- Fixed background from nucleon pole diagrams, tchannel pion, ρ- and ω-meson exchange graphs.
- Regge behavior for W² > 2 GeV² region for nonresonant background with a smooth transition from UIM to Regge background:

$$B_{Tot} = B_{UIM} \frac{1}{1 + (W - W_0)^2} + B_{Reg} \frac{(W - W_0)^2}{1 + (W - W_0)^2}$$

• Unitarized nonresonant background using K-matrix formalism: $B_{unit} = (1 + ih_{l\pm})B_{nonunit}$.

Method of Dispersion Relations

 From causality principle one can express real part of amplitudes in terms of imaginary part:

$$ReB_i^{(\pm,\,0)}(s,\,t,\,Q^2) = Born + \frac{P}{\pi} \int_{thr}^{\infty} ImB_i^{(\pm,\,0)}(s',\,t,\,Q^2) \left(\frac{1}{s'-s} \pm \frac{1}{s'-u}\right) ds'$$

- The Born term is nucleon pole contributions in sand u-channels and π -exchange in t-channel.
- Dispersion integrals are represented as a sum of integrals over 3 energy regions:

$$\int_{thr}^{\infty} ds' = \int_{thr}^{2.2 GeV} ds' + \int_{3 GeV}^{\infty} ds' + \int_{3 GeV}^{\infty} ds'$$

- Integrals over resonance region saturated by known resonances using Breit-Wigner form.
 P33(1232) amplitudes were found by solving the integral equations.
- In the integrals over intermediate energy region small contributions, ±0.1 mFm, were introduced and were varied to obtain better description of the data.
- The integrals over the high energy region were calculated through π,ρ,ω,b₁,a₂ Regge poles.
 These contributions turn out to be negligible in the I and II resonance regions.

- Masses, widths and amplitudes for P₃₃(1232),
 P₁₁(1440), D₁₃(1520) and S₁₁(1535) states were allowed to vary.
- The PV-PS mixing parameter was also fitted: the obtained result $\Lambda_m = 469 \pm 7$ MeV, compared to $\Lambda_m = 450$ MeV in the MAINZ model.

Type of Observable	Number of points	χ ² /N _{pt} JANR	χ²/N _{pt} DR
π ⁰ cross section	3064	2.06	1.86
π ⁺ cross section	2424	1.81	2.43
π ⁰ asymmetry	832	1.48	3.56
π ⁺ asymmetry	828	1.06	3.66

• Overall, the π^+ cross section data dominate the fit. As a result, the JANR fit describes the π^+ cross sections data better than the other observables.

Quantity	P ₁₁ (1440)	S ₁₁ (1535)	D ₁₃ (1520)
M , MeV	1426 ± 4	1525 ± 1	1515 ± 0.5
Γ, MeV	340 ± 27	118 ± 2	109 ± 2

Cross sections for n\u03c0^+

 $Q^2 = 0.40 \; (GeV/c)^2, \; W = 1.510 \; GeV/c^2 \; \Delta \; Q^2 = 0.100 \; (GeV/c)^2, \; \Delta \; W = 0.020 \; GeV/c^2$

Cross sections for pmo

 $Q^2 = 0.40 \; (GeV/c)^2, \; W = 1.520 \; GeV/c^2 \; \Delta \; Q^2 = 0.100 \; (GeV/c)^2, \; \Delta \; W = 0.020 \; GeV/c^2$

Single Spin Asymmetry for nπ⁺

 $Q^{2} = 0.40 \; (GeV/c)^{-2}, \; W = 1.500 \; GeV/c^{-2} \; \Delta \; Q^{2} = 0.100 \; (GeV/c)^{-2}, \; \Delta \; W = 0.040 \; GeV/c^{-2}$

Preliminary Results for D₁₃(1520)

- JANR and DR analysis results for A_{1/2} and A_{3/2} agree. S_{1/2} is model dependent.
- The difference between two methods reflects the model dependence.
- Reasonable agreement with the existing data.
- Helicity amplitudes are obtained using:

$$\Gamma_{tot}$$
 = 110 MeV, $\frac{\Gamma_{\pi}}{\Gamma_{tot}}$ = 0.6.

Multipoles for D₁₃(1520)

Multipoles for S₁₁(1535)

Preliminary Results for S₁₁(1535)

- JANR and DR analysis results for A_{1/2} agree, while S_{1/2} is model dependent.
- The difference between two methods reflects the model dependence.
- Reasonable agreement with existing data from η-production channel.
- Helicity amplitudes are obtained using:

$$\Gamma_{tot}$$
 = 150 MeV, $\frac{\Gamma_{\pi}}{\Gamma_{tot}}$ = 0.45.

Multipoles for P₁₁(1440)

The background is very large compared to resonance part. Discrepancy in JANR and DR is due to the difference in the non-resonant background

Photoproduction

W(GeV)

In case of photoproduction the real parts are not so big, meaning that nonresonant part in imaginary part is also significantly smaller than in case at Q²=0.4 GeV².

Preliminary Results for P₁₁(1440)

- Both $A_{1/2}$ and $S_{1/2}$ amplitudes are small at $Q^2=0.4$ GeV².
- JANR and DR analysis results for A_{1/2} and S_{1/2} disagree, indicating strong model dependence for extraction of both amplitudes.
- Helicity amplitudes are obtained using:

$$\Gamma_{tot} = 350\, \textit{MeV}, \, \frac{\Gamma_{\pi}}{\Gamma_{tot}} = 0.7$$
 .

Summary

- The π⁺ and π⁰ cross section and beam SSA data from CLAS were fit to obtain the resonant amplitudes for P₁₁(1440), D₁₃(1520) and S₁₁(1535).
- Results from the two approaches for the S₁₁(1535) A_{1/2} amplitude are close, and are in good agreement with the results of η-meson electroproduction. The S_{1/2} amplitude is found to be small and extraction model dependent.
- Results from two approaches for A_{1/2} and A_{3/2} for D₁₃(1520) state agree, and are in reasonable agreement with the existing data. The S_{1/2} amplitude is model dependent.
- The P₁₁(1440) A_{1/2} helicity amplitude at
 Q²=0.4GeV² appears to be much smaller than for
 photoproduction. S_{1/2} amplitude is found to be
 small. The values for the resonant multipoles are
 difficult to extract due to large nonresonant
 background.
- Comparison with the dispersion relations analysis provides an estimate for model dependencies for the amplitudes.