Excited Baryons from Bayesian Priors and Overlap Fermions

Frank X. Lee, George Washington U. and JLab

- Physics Motivation
- Brief Review
- Simulation Details
- Fitting Procedure
- Results
- Conclusion

Collaborators:

Shao-Jing Dong (U. Kentucky) Keh-Fei Liu (U. Kentucky) Terry Draper (U. Kentucky) Nilmani Mathur (U. Kentucky) Ivan Horvath (U. Kentucky) Jianbo Zhang (U. Adelaide)

Chiral symmetry breaking, no parity doubling

Observed baryon spectrum: spin 1/2

Ordering of low-lying excited states

Hyperfine Interaction of Quarks in Baryons

versus

• Color-spin

 $\lambda_1^C \bullet \lambda_2^C \overrightarrow{\sigma}_1 \bullet \overrightarrow{\sigma}_2$

- One-gluon exchange
- Isgur and Karl, PRD18, 4187 (1978)
- Capstick and Isgur, PRD34, 2809 (1986)

• Flavor-spin

$$\lambda_1^F \bullet \lambda_2^F \stackrel{\rightarrow}{\sigma}_1 \bullet \stackrel{\rightarrow}{\sigma}_2$$

- Goldstone boson exchange
- Glozman and Riska, Phys. Rep. 268, 263 (1996)
- K.F. Liu et al, PRD59, 112001 (1999)

Lattice studies of N* spectrum

- Wilson-OPE
 - Leinweber, PRD51, 6383 (1995)
- Tadpole-improved, anisotropic actions (Dχ34,D234)
 - Lee, Leinweber, heplat/9809095, heplat/0011060, heplat/0110164
- Doman-wall fermion
 - Sasaki, Blum, Ohta, heplat/0004252, heplat/0011010, heplat/0102010
- NP-improved clover
 - Richards, heplat/0011025, Gockeler et al, heplat/0106022
- Fat-link clover
 - Adelaide group, heplat/0202022
- Overlap fermions
 - F.X. Lee for the Kentucky collaboration, heplat/0208070

Baryon Interpolating Fields

$$I(J^{P}) = \frac{1}{2} (\frac{1}{2}^{+}): \qquad \chi_{1} = \varepsilon_{abc} (u^{aT} C \gamma_{5} d^{b}) u^{c}$$
$$\chi_{2} = \varepsilon_{abc} (u^{aT} C d^{b}) \gamma_{5} u^{c}$$

Negative parity (multiply by γ_5): $\chi_1^- = \gamma_5 \chi_1$, $\chi_2^- = \gamma_5 \chi_2$ Non-relativistic limit:

 $\chi_1 \rightarrow (\text{big-big-big}) \rightarrow O(1) \text{ (couples to nucleon)}$ $\chi_2 \rightarrow (\text{big-small-small}) \rightarrow O(p^2 / E^2) \text{ (couples to ?)}$

 $\chi_1^- \to (\text{big - big - small}) \to O(p/E) \text{ (couples to } \frac{1}{2}^- \text{ state})$ $\chi_2^- \to (\text{big - small - big}) \to O(p/E) \text{ (couples to } \frac{1}{2}^- \text{ state})$ In the spectrum : N^{*}(1535) $\frac{1}{2}^-$ and N^{*}(1620) $\frac{1}{2}^-$.

No.	$m_0 a$	$m_{\pi}a$	$m_{ ho}a$	$m_{\pi}/m_{ ho}$	$m_{\pi}L$
1	1.20000	1.5766	1.9524	0.808	25.23
2	1.00000	1.4679	1.7807	0.824	23.49
3	0.80000	1.3047	1.5676	0.832	20.88
4	0.60000	1.1039	1.3511	0.817	17.66
5	0.40000	0.8731	1 1 3 6 1	0.769	13.97
6	0.32200	0.7739	1.0517	0.736	12.38
7	0.26833	0.7013	0.9938	0.706	11.22
8	0.22633	0.6410	0.9501	0.675	10.26
9	0.18783	0.5820	0.9142	0.637	9.31
10	0.15633	0.5300	0.8843	0.599	8.48
11	0.12950	0.4823	0.8501	0.567	7.72
12	0.10850	0.4423	0.8407	0.526	7.08
13	0.08983	0.4040	0.8194	0.493	6.46
14	0.07583	0.3730	0.8070	0.462	5.97
15	0.06417	0.3460	0.7966	0.434	5.54
16	0.05367	0.3190	0.7945	0.402	5.10
17	0.04433	0.2940	0.7818	0.376	4.70
18	0.03617	0.2700	0.7749	0.348	4.32
19	0.03033	0.2520	0.7697	0.327	4.03
20	0.02567	0.2350	0.7637	0.308	3.76
21	0.02333	0.2270	0.7613	0.298	3.63
22	0.02100	0.2170	0.7591	0.286	3.47
23	0.01867	0.2080	0.7567	0.275	3.33
24	0.01750	0.2030	0.7561	0.268	3.25
25	0.01633	0.1980	0.7553	0.262	3.17
26	0.01400	0.1870	0.7534	0.248	2.99

Quark mass coverage

- 16^3x28 lattice with 1/a=0.978GeV or a=0.20 fm from f_{π}
- Strange quark mass set at No. 6 from \$\phi(1020)\$ input.
- Smallest pion mass is about 180 MeV.
- Physical $m_{\pi}/m_{\rho}=0.18$
- Box size is 3 times the smallest pion Compton wavelength

Conventional Curve Fitting

Data: $\{G_k(t_i)\}$, configuration k = 1, N, time slice i = 1, N_t

average
$$\overline{G}(t_i) = \frac{1}{N} \sum_{k=1}^{N} G_k(t_i)$$

Theory:
$$G_{\text{th}}(t) = \sum_{n=1}^{\infty} A_n e^{-E_n t}$$

minimize
$$\chi^2(A_n, E_n) = \sum_{i,j=1}^{N_t} \left[\overline{G}(t_i) - G_{th}(t_i)\right] C_{ij}^{-1} \left[\overline{G}(t_j) - G_{th}(t_j)\right]$$

covariance matrix:
$$C_{ij} = \frac{1}{N(N-1)} \sum_{k=1}^{N} \left[G_k(t_i) - \overline{G}(t_i) \right] \left[G_k(t_j) - \overline{G}(t_j) \right]$$

Problem: the procedure is intrinsically singular so one is forced to fit at large times where the ground state dominates.

Constrained Curve Fitting: theory

(see Lepage, heplat/0110175 and Morningstar, heplat/0112023)

Bayes's probability theorem: $P(A | B) = \frac{P(B | A) P(B)}{P(A)}$

Translation to our problem:
$$P(\rho | \overline{G}) = \frac{P(\overline{G} | \rho) P(\rho)}{P(\overline{G})} \propto P(\overline{G} | \rho) P(\rho)$$

The best solution is from maximization of this probability: $\frac{\partial}{\partial \rho} P(\rho | \overline{G}) = 0$

Assume: χ^2 probability: $P(\overline{G} | \rho) = e^{-\chi^2/2}$ *p*rior probability: $P(\rho) = e^{-\chi^2_{prior}/2}$

(maximum entropy method : $P(\rho) = e^{\alpha S}$)

Then the final probability is $P(\rho | \overline{G}) = e^{-\chi^2_{aug}/2}$ where $\chi^2_{aug} = \chi^2 + \chi^2_{prior}$

Note: if no prior, this amounts to a simple χ^2 minimization, which does not work.

Constrained Curve Fitting: practice

minimize
$$\chi^2_{aug} = \chi^2 + \chi^2_{prior}$$

$$\chi^{2}_{prior} = \sum_{n} \frac{\left(A_{n} - \widetilde{A}_{n}\right)^{2}}{\widetilde{\sigma}^{2}_{A_{n}}} + \sum_{n} \frac{\left(E_{n} - \widetilde{E}_{n}\right)^{2}}{\widetilde{\sigma}^{2}_{E_{n}}}$$

 $\{A_n, E_n\}$ are fit parameters as in $G_{\text{th}}(t_i) = \sum_n A_n e^{-E_n t_i}$

 $\{\widetilde{A}_n \pm \widetilde{\sigma}_{A_n}, \widetilde{E}_n \pm \widetilde{\sigma}_{E_n}\}$ are input parameters (Bayesian priors)

1) Goal: fit as many data points in $G(t_i)$ and as many terms in G_{th} . 2) Use prior knowledge, like $\widetilde{A}_n > 0$, $\widetilde{E}_n - \widetilde{E}_{n-1} > 0$

3) Seek guidance for priors from a subset of data (empirical Bayes method).4) Un-constrain the term of interest to have conservative error bars.

(See heplat/0208055 by S.J. Dong et al)

Baryon Two-point Function

 $G(t) = \sum_{\vec{x}} \langle \operatorname{vac} | T \Big[\chi_1(x) \overline{\chi_1}(0) \Big] | \operatorname{vac} \rangle$ = $(1 + \gamma_4) \Big[A_+ e^{-m_+(t-t_0)} + b A_- e^{-m_-(N_t+t_0-t)} \Big] + (1 - \gamma_4) \Big[b A_+ e^{-m_+(N_t+t_0-t)} + A_- e^{-m_-(t-t_0)} \Big]$

Fixed boundary condition (b=0) $G(t) = (1 + \gamma_4)A_+e^{-m_+(t-t_0)} + (1 - \gamma_4)A_-e^{-m_-(t-t_0)}$ upper components: $G_U(t) = 2A_+e^{-m_+(t-t_0)}$ lower components: $G_I(t) = 2A_-e^{-m_-(t-t_0)}$

Anti-periodic boundary condition (b= -1) $G_U(t) = 2A_+e^{-m_+(t-t_0)} - 2A_-e^{-m_-(N_t+t_0-t)}$ $G_L(t) = -2A_+e^{-m_+(N_t+t_0-t)} + 2A_-e^{-m_-(t-t_0)}$

Nucleon from
$$\chi_1$$
 operator: $G_U(t) = 2A_+ e^{-m_+(t-t_0)} - 2A_- e^{-m_-(N_t+t_0-t)} + \cdots$

Upper components:

Left half is dominated by m₊

Right half is dominated by m_

A₊ is positive.A_{_} is negative.

Nucleon from χ_1 operator: $G_L(t) = -2A_+e^{-m_+(N_t+t_0-t)} + 2A_-e^{-m_-(t-t_0)} + \cdots$

Lower components: left half m_ right half m₊

A_ is negative.

G(t) changes sign at small quark masses: quenched artifacts

Positive-parity N(1/2+) from χ_1

Sensitivity to priors

- Examle:
- N'(1/2+) at $m_{\pi}/m_{\rho}=0.30$
- Vary the Roper prior

$$\chi^{2}_{prior} = \lambda \left[\frac{(A_{2} - \widetilde{A}_{2})^{2}}{\widetilde{\sigma}^{2}_{A_{2}}} + \frac{(E_{2} - \widetilde{E}_{2})^{2}}{\widetilde{\sigma}^{2}_{E_{2}}} \right] + \cdots$$

Level ordering in the nucleon channel

Level ordering in the Λ (1/2) channel

Level ordering in the $\Sigma(1/2)$ channel

Level ordering in the $\Xi(1/2)$ channel

Level ordering in the Δ channel

Conclusion

- Constrained curve-fitting offers an exciting new tool in the study of baryon spectroscopy on the lattice.
 - It allows a systematic and more reliable determination of the 1st excited state.
- Coupled with the overlap fermion action which allows access to quark masses close to the physical limit with exact chiral symmetry, we found that
 - The Roper state is observed as the 1st excited state of the nucleon from the standard nucleon interpolating field (χ_1).
 - The level orderings in the low-lying spin-1/2 sector are largely consistent with experiment, including the $\Lambda(1405)$.
 - Dramatic cross-overs take place in the small quark mass region of $m_{\pi} \sim 300$ to 400 MeV.

Conclusion continued

- Physics implications:
 - The Roper is most likely a simple 3-quark state, rather than a 5-quark state or some other combination.
 - The results favor the flavor-spin dominant picture of hyperfine splittings in baryons, over color-spin.
- Future work
 - To further study the constrained fitting method on baryon spectroscopy
 - Scrutinize the results and sensitivities to the priors
 - Automate the fitting procedure.
 - What about quenched artifacts (N η ' hair-pins) ?
 - How reliable is the 2nd excited state?

Reserve Slides

Is it a true state?

• A two-particle state would have the energy

$$E = \sqrt{p^2 + M_N^2} + \sqrt{p^2 + M_\pi^2}$$
, where $p = \frac{2\pi}{La}$

which is sensitive to the box size L.

- A true state has zero momentum which is not sensitive to L.
 - A simple test: check L dependence.
 16³x28 at a=0.2 fm
 - $-12^{3}x28$ at a=0.2 fm

Box size dependence

16³x28 12³x28

• The Roper state survives the L test.

Hairpin signatures: negative contribution to G(t). The story so far ...

• Negative-parity splitting is consistent with experiment.

• Little evidence of the Roper state N*(1440)1/2+ from $\chi_{2.}$

• Question: what is the 1^{st} excited state of χ_1 ?

Simulation Details

• Iwasaki gauge action

 $S_G = \beta(c_0 \text{ plaq} + c_1 \text{ rect}) \text{ with } \beta = 6/g^2, c_0 = 3.648, c_1 = -0.331$

- 16^3x28 lattice at $\beta=2.264$, 80 configurations.
- a=0.175 fm or 1/a=1.126 GeV from string tension
- $a=0.20 \text{ fm or } 1/a=0.978 \text{ GeV from } f_{\pi}$
- Overlap fermions (Neu98, Lus98)

$$D(m_0) = \left(\rho + \frac{m_0 a}{2}\right) + \left(\rho - \frac{m_0 a}{2}\right) \gamma_5 \varepsilon(H)$$

where $\varepsilon(H) = H\sqrt{H^2}$ is matrix sign function
and $H = \gamma_5 D_w$ and we use $\rho = 1.368$

• Exact chiral symmetry: no O(a) error, even O(a²) error mild, no exceptional configurations, critical-slowing down mild. See Dong et al, PRL85, 5051 (2001) Multi-mass algorithm: we did 26 quark masses.

- total cost is cost of smallest mass plus 10% overhead.