Excited Baryons from Bayesian Priors and Overlap Fermions

Frank X. Lee, George Washington U. and JLab

- Physics Motivation
- Brief Review
- Simulation Details
- Fitting Procedure
- Results
- Conclusion

Collaborators:
Shao-Jing Dong (U. Kentucky)
Keh-Fei Liu (U. Kentucky)
Terry Draper (U. Kentucky) Nilmani Mathur (U. Kentucky)
Ivan Horvath (U. Kentucky)
Jianbo Zhang (U. Adelaide)

Observed baryon spectrum: spin 1/2

Chiral symmetry breaking, no parity doubling

Ordering of low-lying excited states

Hyperfine Interaction of Quarks in Baryons

versus

- Color-spin

$$
\lambda_{1}^{c} \cdot \lambda_{2}^{c} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}
$$

- One-gluon exchange
- Isgur and Karl, PRD18, 4187 (1978)
- Capstick and Isgur, PRD34, 2809 (1986)
- Flavor-spin

$$
\lambda_{1}^{r} \cdot \lambda_{2}^{F} \vec{\sigma}_{\cdot} \cdot \vec{\sigma}_{2}
$$

- Goldstone boson exchange
- Glozman and Riska, Phys. Rep. 268, 263 (1996)
- K.F. Liu et al, PRD59, 112001 (1999)

Lattice studies of N^{*} spectrum

- Wilson-OPE
- Leinweber, PRD51, 6383 (1995)
- Tadpole-improved, anisotropic actions (D 24 ,D234)
- Lee, Leinweber, heplat/9809095, heplat/0011060, heplat/0110164
- Doman-wall fermion
- Sasaki, Blum, Ohta, heplat/0004252, heplat/0011010, heplat/0102010
- NP-improved clover
- Richards, heplat/0011025, Gockeler et al, heplat/0106022
- Fat-link clover
- Adelaide group, heplat/0202022
- Overlap fermions
- F.X. Lee for the Kentucky collaboration, heplat/0208070

Baryon Interpolating Fields

$$
\begin{array}{ll}
I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}^{+}\right): & \chi_{1}=\varepsilon_{a b c}\left(u^{a T} C \gamma_{5} d^{b}\right) u^{c} \\
& \chi_{2}=\varepsilon_{a b c}\left(u^{a T} C d^{b}\right) \gamma_{5} u^{c}
\end{array}
$$

Negative parity (multiply by γ_{5}): $\quad \chi_{1}^{-}=\gamma_{5} \chi_{1}, \quad \chi_{2}^{-}=\gamma_{5} \chi_{2}$
Non-relativistic limit:

$$
\begin{aligned}
& \chi_{1} \rightarrow(\text { big - big - big }) \rightarrow O(1)(\text { couples to nucleon }) \\
& \chi_{2} \rightarrow\left(\text { big - small-small) } \rightarrow O\left(p^{2} / E^{2}\right)\right. \text { (couples to ?) } \\
& \chi_{1}^{-} \rightarrow(\text { big -big-small }) \rightarrow O(p / E)\left(\text { couples to } \frac{1}{2}^{-}\right. \text {state) } \\
& \chi_{2}^{-} \rightarrow(\text { big -small - big }) \rightarrow O(p / E)\left(\text { couples to } \frac{1}{2}^{-}\right. \text {state) }
\end{aligned}
$$ In the spectrum : $\mathrm{N}^{*}(1535) \frac{1}{2}^{-}$and $\mathrm{N}^{*}(1620) \frac{1}{2}^{-}$.

No.	$m_{0} a$	$m_{\pi} a$	$m_{\rho} a$	m_{π} / m_{ρ}	$m_{\pi} L$
1	1.20000	1.5766	1.9524	0.808	25.23
2	1.00000	1.4679	1.7807	0.824	23.49
3	0.80000	1.3047	1.5676	0.832	20.88
4	0.60000	1.1039	1.3511	0.817	17.66
5	0.40000	0.8731	11361	0.769	13.97
6	0.32200	0.7739	1.0517	0.736	12.38
7	0.26833	0.7013	0.9938	0.706	11.22
8	0.22633	0.6410	0.9501	0.675	10.26
9	0.18783	0.5820	0.9142	0.637	9.31
10	0.15633	0.5300	0.8843	0.599	8.48
11	0.12950	0.4823	0.8501	0.567	7.72
12	0.10850	0.4423	0.8407	0.526	7.08
13	0.08983	0.4040	0.8194	0.493	6.46
14	0.07583	0.3730	0.8070	0.462	5.97
15	0.06417	0.3460	0.7966	0.434	5.54
16	0.05367	0.3190	0.7945	0.402	5.10
17	0.04433	0.2940	0.7818	0.376	4.70
18	0.03617	0.2700	0.7749	0.348	4.32
19	0.03033	0.2520	0.7697	0.327	4.03
20	0.02567	0.2350	0.7637	0.308	3.76
21	0.02333	0.2270	0.7613	0.298	3.63
22	0.02100	0.2170	0.7591	0.286	3.47
23	0.01867	0.2080	0.7567	0.275	3.33
24	0.01750	0.2030	0.7561	0.268	3.25
25	0.01633	01080	0.7553	0.262	2.17
26	0.01400	0.1870	0.7534	0.248	2.99

Quark mass coverage

- $16^{3} \times 28$ lattice with $1 / a=0.978$ GeV or $\mathrm{a}=0.20$ fm from f_{π}
- Strange quark mass set at No. 6 from $\phi(1020)$ input.
- Smallest pion mass is about 180 MeV .
- Physical $m_{\pi} / m_{\rho}=0.18$
- Box size is 3 times the smallest pion Compton wavelength

Conventional Curve Fitting

Data: $\left\{G_{k}\left(t_{i}\right)\right\}$, configuration $\mathrm{k}=1, \mathrm{~N}$, time slice $\mathrm{i}=1, \mathrm{~N}_{\mathrm{t}}$

$$
\operatorname{average} \bar{G}\left(t_{i}\right)=\frac{1}{N} \sum_{k=1}^{N} G_{k}\left(t_{i}\right)
$$

Theory: $G_{\mathrm{th}}(t)=\sum_{n=1}^{\infty} A_{n} e^{-E_{n} t}$
minimize $\chi^{2}\left(A_{n}, E_{n}\right)=\sum_{i, j=1}^{N_{t}}\left[\bar{G}\left(t_{i}\right)-G_{t h}\left(t_{i}\right)\right] C_{i j}^{-1}\left[\bar{G}\left(t_{j}\right)-G_{t h}\left(t_{j}\right)\right]$
covariance matrix : $C_{i j}=\frac{1}{N(N-1)} \sum_{k=1}^{N}\left[G_{k}\left(t_{i}\right)-\bar{G}\left(t_{i}\right)\right]\left[G_{k}\left(t_{j}\right)-\bar{G}\left(t_{j}\right)\right]$
Problem: the procedure is intrinsically singular so one is forced to fit at large times where the ground state dominates.

Constrained Curve Fitting: theory

(see Lepage, heplat/0110175 and Morningstar, heplat/0112023)
Bayes's probability theorem: $P(A \mid B)=\frac{P(B \mid A) P(B)}{P(A)}$
Translation to our problem : $P(\rho \mid \bar{G})=\frac{P(\bar{G} \mid \rho) P(\rho)}{P(\bar{G})} \propto P(\bar{G} \mid \rho) P(\rho)$
The best solution is from maximization of this probability : $\frac{\partial}{\partial \rho} P(\rho \mid \bar{G})=0$
Assume: $\quad \chi^{2}$ probability : $P(\bar{G} \mid \rho)=e^{-\chi^{2} / 2}$
prior probability : $P(\rho)=e^{-\chi_{\text {prior }}^{2} / 2}$
(maximum entropy method: $P(\rho)=e^{\alpha S}$)
Then the final probaility is $P(\rho \mid \bar{G})=e^{-\chi_{\text {wis }}^{2} / 2}$ where $\chi_{\text {aug }}^{2}=\chi^{2}+\chi_{\text {prior }}^{2}$
Note: if no prior, this amounts to a simple χ^{2} minimization, which does not work.

Constrained Curve Fitting: practice

$\operatorname{minimize} \chi_{\text {aug }}^{2}=\chi^{2}+\chi_{\text {prior }}^{2}$

$$
\chi_{\text {prior }}^{2}=\sum_{n} \frac{\left(A_{n}-\widetilde{A}_{n}\right)^{2}}{\widetilde{\sigma}_{A_{n}}^{2}}+\sum_{n} \frac{\left(E_{n}-\widetilde{E}_{n}\right)^{2}}{\widetilde{\sigma}_{E_{n}}^{2}}
$$

$$
\begin{aligned}
& \left\{A_{n}, E_{n}\right\} \text { are fit parameters as in } G_{\mathrm{th}}\left(t_{i}\right)=\sum_{n} A_{n} e^{-E_{n} t_{i}} \\
& \left\{\widetilde{A}_{n} \pm \widetilde{\sigma}_{A_{n}}, \widetilde{E}_{n} \pm \widetilde{\sigma}_{E_{n}}\right\} \text { are input parameters (Bayesian priors) }
\end{aligned}
$$

1) Goal: fit as many data points in $\bar{G}\left(t_{i}\right)$ and as many terms in G_{in}. 2) Use prior knowledge, like $\widetilde{A}_{n}>0, \widetilde{E}_{n}-\widetilde{E}_{n-1}>0$
2) Seek guidance for priors from a subset of data (empirical Bayes method).
3) Un-constrain the term of interest to have conservative error bars.
(See heplat/0208055 by S.J. Dong et al)

Baryon Two-point Function

$\left.G(t)=\sum_{\bar{x}}\langle\mathrm{vac}| T \mid \chi_{1}(x) \overline{\chi_{1}}(0)\right]|\mathrm{vac}\rangle$
$=\left(1+\gamma_{4}\right)\left[A_{+} e^{-m_{+}\left(t-t_{0}\right)}+b A_{-} e^{-m_{-}\left(N_{t}+t_{0}-t\right)}\right]+\left(1-\gamma_{4}\right)\left[b A_{+} e^{-m_{+}\left(N_{t}+t_{0}-t\right)}+A_{-} e^{-m_{-}\left(t-t_{0}\right)}\right]$

Fixed boundary condition $(\mathrm{b}=0)$

$$
\begin{aligned}
& G(t)=\left(1+\gamma_{4}\right) A_{+} e^{-m_{+}\left(t-t_{0}\right)}+\left(1-\gamma_{4}\right) A_{-} e^{-m_{-}\left(t-t_{0}\right)} \\
& \text { upper components : } G_{U}(t)=2 A_{+} e^{-m_{+}\left(t-t_{0}\right)} \\
& \text { lower components: } G_{L}(t)=2 A_{-} e^{-m_{-}\left(t-t_{0}\right)}
\end{aligned}
$$

Anti-periodic boundary condition ($b=-1$)

$$
\begin{aligned}
& G_{U}(t)=2 A_{+} e^{-m_{+}\left(t-t_{0}\right)}-2 A_{-} e^{-m_{-}\left(N_{t}+t_{0}-t\right)} \\
& G_{L}(t)=-2 A_{+} e^{-m_{+}\left(N_{t}+t_{0}-t\right)}+2 A_{-} e^{-m_{-}\left(t-t_{0}\right)}
\end{aligned}
$$

Nucleon from χ_{1} operator: $\quad G_{U}(t)=2 A_{+} e^{-m_{+}\left(t-t_{0}\right)}-2 A_{-} e^{-m_{-}\left(N_{t}+t_{0}-t\right)}+\cdots$

Upper components:

Left half is dominated by m_{+}

Right half is dominated by m.

A_{+}is positive. A_{-}is negative.

Nucleon from χ_{1} operator: $\quad G_{L}(t)=-2 A_{+} e^{-m_{+}\left(N_{t}+t_{0}-t\right)}+2 A_{-} e^{-m_{-}\left(t-t_{0}\right)}+\cdots$

Lower components: left half m. right half m_{+}

A_ is negative.
$\mathrm{G}(\mathrm{t})$ changes sign at small quark masses: quenched artifacts

Positive-parity N(1/2+) from χ_{1}

Sensitivity to priors

- Examle:
- $\mathrm{N}^{\prime}(1 / 2+)$ at $\mathrm{m}_{\pi} / \mathrm{m}_{\mathrm{\rho}}=0.30$
- Vary the Roper prior

$$
\chi_{\text {prior }}^{2}=\lambda \int^{\left(A_{2}-\widetilde{A}_{2}\right)^{2}} \frac{\left(E_{2}-\widetilde{E}_{2}\right)^{2}}{\widetilde{\sigma}_{A_{2}}^{2}}+\cdots
$$

Level ordering in the nucleon channel

Level ordering in the $\Lambda(1 / 2)$ channel

Level ordering in the $\Sigma(1 / 2)$ channel

Level ordering in the $\Xi(1 / 2)$ channel

Level ordering in the Δ channel

Conclusion

- Constrained curve-fitting offers an exciting new tool in the study of baryon spectroscopy on the lattice.
- It allows a systematic and more reliable determination of the $1^{\text {st }}$ excited state.
- Coupled with the overlap fermion action which allows access to quark masses close to the physical limit with exact chiral symmetry, we found that
- The Roper state is observed as the $1^{\text {st }}$ excited state of the nucleon from the standard nucleon interpolating field $\left(\chi_{1}\right)$.
- The level orderings in the low-lying spin-1/2 sector are largely consistent with experiment, including the
- Dramatic cross-overs take place in the small quark mass region of $m_{\pi} \sim 300$ to 400 MeV .

Conclusion continued

- Physics implications:
- The Roper is most likely a simple 3-quark state, rather than a 5-quark state or some other combination.
- The results favor the flavor-spin dominant picture of hyperfine splittings in baryons, over color-spin.
- Future work
- To further study the constrained fitting method on baryon spectroscopy
- Scrutinize the results and sensitivities to the priors
- Automate the fitting procedure.
- What about quenched artifacts ($\mathrm{N} \eta$ ' hair-pins) ?
- How reliable is the $2^{\text {nd }}$ excited state?

Reserve Slides

Is it a true state?

- A two-particle state would have the energy

$$
E=\sqrt{p^{2}+M_{N}^{2}}+\sqrt{p^{2}+M_{\pi}^{2}}, \text { where } \mathrm{p}=\frac{2 \pi}{\mathrm{La}}
$$ which is sensitive to the box size L .

- A true state has zero momentum which is not sensitive to L .
- A simple test: check L dependence.
$-16^{3} \times 28$ at $\mathrm{a}=0.2 \mathrm{fm}$
$-12^{3} \times 28$ at $a=0.2 \mathrm{fm}$

Box size dependence

- The Roper state survives the L test.

What about quenched effects?

$\mathrm{N} \rightarrow \mathrm{N}^{\prime}$
(a)

(b)

(c)

(d)

(c) (chiral dynamics)

The story so far ...

- Negative-parity splitting is consistent with experiment.

- Little evidence of the Roper state $N^{*}(1440) 1 / 2+$ from χ_{2}.
- Question: what is the $1^{\text {st }}$ excited state of χ_{1} ?

Simulation Details

- Iwasaki gauge action

$$
S_{G}=\beta\left(c_{0} \text { plaq }+c_{1} \text { rect }\right) \text { with } \beta=6 / \mathrm{g}^{2}, c_{0}=3.648, c_{1}=-0.331
$$

- $16^{3} \times 28$ lattice at $\beta=2.264,80$ configurations.
- $a=0.175 \mathrm{fm}$ or $1 / a=1.126 \mathrm{GeV}$ from string tension
- $a=0.20 \mathrm{fm}$ or $1 / \mathrm{a}=0.978 \mathrm{GeV}$ from f_{π}
- Overlap fermions (Neu98, Lus98)

$$
\begin{aligned}
& D\left(m_{0}\right)=\left(\rho+\frac{m_{0} a}{2}\right)+\left(\rho-\frac{m_{0} a}{2}\right) \gamma_{5} \varepsilon(H) \\
& \text { where } \varepsilon(H)=H \sqrt{H^{2}} \text { is matrix sign function } \\
& \text { and } H=\gamma_{5} D_{w} \text { and we use } \rho=1.368
\end{aligned}
$$

- Exact chiral symmetry: no O(a) error, even $\mathrm{O}\left(\mathrm{a}^{2}\right)$ error mild, no exceptional configurations, critical-slowing down mild. See Dong et al, PRL85, 5051 (2001) Multi-mass algorithm: we did 26 quark masses.
- total cost is cost of smallest mass plus 10% overhead.

