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• Lessons of History (analytical S-matrix vs. perturbation theory)

• Field Theory (universal properties, consistent approximations)

• Multi-channel (γN , πN , FSI, multiple pions, η, K’s)
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Isobar model: “dressed perturbation theory” → widths not neces-

sarily consistent with decay channels, incoherent sum, i.e., no final

states interaction, t-exchange non-trivial.

Chiral perturbation theory: (very) low energy physics → deriva-

tives in the interaction generate unitarity violations at higher energies

through strong interaction. Hard to go beyond three-particle states.

Unitarization is not well-defined and does not take away the fact that

the interactions are too strong at large momenta.

S-matrix: no microscopic motivation, high-t problems (explained by

parton models of hadrons), difficult to implement symmetries (gauge,

CVC, PCAC). However, models important aspects of hadron physics

(s-t duality, unitarity saturation, etc.).
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The lowest order approximation of a state:

0p

−p

∫ ∞
0

dx0S0(x)LIψ
†(0)|0〉 =

1

E −H0
V |φ0〉 = |ψ〉

In terms of on-shell, asymptotic energies:

|ψ〉 =
∫ ∞

threshold
dE γ(E) |φ(E)〉

the spectroscopic densities γ(E) have known singularities:

γ(ω) = αδ(E − ω) +
β(ω)

E − ω
where E is the scattering energy.
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The approximations are in the functional form of the
spectroscopic density β(ω):

• 1- and 2-particle phase space reproduces the bubble sum result.

• Expansions in a basis are possible for systematic improvement.

• Multiple particle states can be approximated by phase space,
which allows one to treat, e.g., multiple pion states (3,4,5π..).

• t-exchange reproduced exactly with 2-dim β(ω, ω′) (where ω′ is
the energy of the two-particle “parent state”).
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Always tell people where there free lunch was cooked.

The scattering problem (Lippmann-Schwinger: ψ = 1/(E−H0)V ψ or

Hamiltonian: (E −H0)ψ = V ψ) is a discrete problem, because of the

discrete number of spectroscopic density functions βi(ω).

Analyticity (and unitarity, and renormalization) enters through the

Hilbert transform:

β̃2
ij(E) =

∫ ∞
threshold

dω
βi(ω)βj(ω)

E − ω
Divergences in β̃2

ij(E) correspond to those of the perturbation theory.

5



Different models for the P33 = ∆.

1100 1200 1300 1400 1500 1600 1700
Energy [MeV]

0

50

100

150

Ph
as

e 
sh

if
t [

de
gr

ee
s]

(“N̄γ5γµN [π, ∂µπ∗]”, “N̄γ5γµ∆∂µπ,” “N̄γ5∆π,” etc.)
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The same models for the P31 and the P13.
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Fitting only coupling constants and renormalization constants!
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The rho meson with coupling to 
the two−pion and the four−pion
state.
The coupling to the four−pion
state is required to suppress the
high−energy two−pion decay.
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Everybody, who wants to extract relevant (universal) informa-

tion from resonant hadron scattering data, will have to make

some approximations.

Unitarity, coupled-channel effects, crossing symmetry, Regge, more-

than-two-particle final states, final-state interactions, all play a role.

Approximating the energy (momentum) dependence of each of the

relevant states is a good way to get a handle on the complexity.
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