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e Lessons of History (analytical S-matrix vs. perturbation theory)

e Field Theory (universal properties, consistent approximations)

e Multi-channel (yN, =N, FSI, multiple pions, n, K’'s)



Isobar model: ‘“dressed perturbation theory” — widths not neces-
sarily consistent with decay channels, incoherent sum, i.e., no final
states interaction, t-exchange non-trivial.

Chiral perturbation theory: (very) low energy physics — deriva-
tives in the interaction generate unitarity violations at higher energies
through strong interaction. Hard to go beyond three-particle states.
Unitarization is not well-defined and does not take away the fact that
the interactions are too strong at large momenta.

S-matrix: no microscopic motivation, high-t problems (explained by
parton models of hadrons), difficult to implement symmetries (gauge,
CVC, PCAC). However, models important aspects of hadron physics
(s-t duality, unitarity saturation, etc.).
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The lowest order approximation of a state: P
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In terms of on-shell, asymptotic energies:
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the spectroscopic densities v(E) have known singularities:
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where FE is the scattering energy.



T he approximations are in the functional form of the
spectroscopic density G(w):

e 1- and 2-particle phase space reproduces the bubble sum result.
e EXpansions in a basis are possible for systematic improvement.

e Multiple particle states can be approximated by phase space,
which allows one to treat, e.g., multiple pion states (3,4,57..).

e t-exchange reproduced exactly with 2-dim B(w,w’) (where &' is
the energy of the two-particle “parent state”).



Always tell people where there free lunch was cooked.

The scattering problem (Lippmann-Schwinger: ¢ = 1/(E — Hg)Vy or
Hamiltonian: (E — Hg)y = V) is a discrete problem, because of the
discrete number of spectroscopic density functions 3;(w).

Analyticity (and unitarity, and renormalization) enters through the
Hilbert transform:
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Divergences in B%(E) correspond to those of the perturbation theory.



Different models for the P33 = A.
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The same models for the P3; and the P 3.
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Fitting only coupling constants and renormalization constants!
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The rho meson with coupling
the two—pion and the four—pic
state.

The coupling to the four—pion

1.5 state is required to suppress

high—energy two—pion decay



Everybody, who wants to extract relevant (universal) informa-
tion from resonant hadron scattering data, will have to make
some approximations.

Unitarity, coupled-channel effects, crossing symmetry, Regge, more-
than-two-particle final states, final-state interactions, all play a role.

Approximating the energy (momentum) dependence of each of the
relevant states is a good way to get a handle on the complexity.



