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Dissociation by collision with medium particles

h+J/p — (Cq) + (¢C) + X

J/ (or its precursor) is absorbed by collision with nucleons at high
energies and with produced =, p, K, and other particles at low kinetic

energies.

It is important to know the J /1 dissociation cross section in col-

lisions with medium particles.
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Reaction of Two Mesons

Each particle is subject to a constraint:

e = L?‘ + l 2, %j(iﬁ.;j), t=1,23,4
o 2my 2 g ‘
Total Hamiltonian is
pi Pl P P

H = ——+—=4+——4+—+Vio+Vi3+V14+Vos+Vay+Vaq
2my 2meo 2mg  2my

There are two ways to split this Hamiltonian

H = Hy+ Ving

2 : 2 2
Hy(prior) = o P + Vig + < + rp4 + Va4
2my  2my 2my  2my
Vine(prior) = Vig + Vig + Vag + Vay
2 2 2 2
Hofpost) = S+ B4 Ly, 4 B3 W Ly
2my  2mo 2ms  2my

Vine(post) = Vig + Vig + Vag + Viy
It is casy to prove that
(C(14)D(32)|Vine(prior) | A(12) B(34))
= (C(14) D(32)|Vin(post)| A(12) B(34))



Barnes and Swanson Model

(T. Barnes and E. S. Swanson, Phys. Rev. D46, 131 (1992))
Reaction is described as a quark interchanged process
after a constituent-constituent interaction.
“Prior”” Diagrams included in the calculations (inter-

action takes place before the interchange of quarks):

C1 C2

¥
3

T1 T2

There are also ““Post” diagrams (interaction takes

place after the interchange of quarks):

C1 C2

M
3




KAON-NUCLEON SCATTERING AMPLITUDES AND Z°* . ..
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The spin factor is simply the matrix element of §, - §;
for scattering constituents i and 7, evaluated between the
initial and final (¢g)(geq) spin states. This is 1/2 if both
spins i and j are and both flip, +1/4 if the
spins are aligned and neither flips, and ~1/4 if they are
antialigned and neither flips. All other cases give sero.
All spectator spins must not flip or the overall spin factor
is trivially zero.

The color factor can be evaluated using the states (9),
(10) and standard trace techniques, as in (51) of Ref. [16].
The result for each diagram is

Leotoe (D) = +4/9 , (24)
Teoioe(Da) = ~2/9 (25)
Icotor(Ds) = —4/9 (26)
Teotee( D) = +2/9 . (27)

D. “Diagram weights" for KN scattering

We conventionally write the meson-baryon hy; matrix
clements as row vectars which display the numerical co-

1
efficient of each diagram's spatial overlap integral. Thus,

hg = [m. wy, Wy, m] (28)
represents
hﬂ 'WII“I[D'I.} +“Iﬁﬂl-pi] +“M[Dﬂ}

This notation is useful because the diagram weights {w;}
are group theoretic numbers that obey certain symme-
tries, whereas the spatial overlap integrals are compli-
cated functions that depend on the specific spatial wave
functions rather than the symmetries of the problem.
As an illustration, our practice subamplitude A7 is

w3 =va-(3) (= 3) - Towaes(D3) .
(using the spin and color matrix elements given above),
which we abbreviate as

V3
-5 0 u] .
This completes our detailed derivation of h7f for the sub-

(30)

Nt = [n. (31)




The interaction Vj;(r;;) for for ¢-q is

! A7) x
V;{j{'-":] SR g ;E ) {I’m!rar {nuinmh( ]' T+ 1""iim*m( J e 1L’----mn apm{ . Hm }
(i) AT(y) 3b 8oy, Y 5.
= — . e S S = +V:'x: .
9 2 { r 4 3mam i /2 u

We found the following set of parameters

127 -
- —. A=10 B=10.310GeV,
e T 2ny) In(A + Q*/B?) {

b=0.18 GeV?, o =0.897 GeV, my,=my=0.2334 GeV,

me = 0.575 GeV, m,.= 1776 GeV, my = 5.102 GeV,

L;'mi = (J,620 ('h_ﬁ\f’

and Q= s;; = (bound state mass)*.



Meson Mass (GeV)
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The differential cross section for A(12) + B(34) —
C(14) + D(32) is given by

do 1 K

dt 047?5@,1\2 M;il

where and the matrix element M ; is related to 7;; b

M = (2m)*2EX2ER2EE2E] Ty,

Tij = (final state| Vi |initial state)

= (C(14) D(32)|Viut| A(12) B(34))

= Jcolor I spin I space

Ipace = [ di d'®5(26 — A)Pp(28 — A = 2C)V (K — K')

K‘D{?(?E = C)‘i}n(gﬂ -C - BA]

where V (k' — k) is the Fourier transform of V'(r)



‘omparison of the Barnes and Swanson Model

with experimental data
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Aehbund
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Good agreement of the theoretical I = 2,
mm phase shift (solid curve) with experi-

mental data.




J /1) Dissociation Cross Sections at 7' = 0
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and p at T' =0 as a function of the kinetic energy Exp




Advantages

1. The model posseses strong phenomenological basis
as the interaction is obtained from the meson mass
spectrum. It gives good agreement with experimen-

tal scattering data for w-7, K-m, and K-N reactions.

C. Y. Wong, E. S. Swanson, and T. Barnes, PRC 62, 045201, 2000
T. Barnes, E. S. Swanson, and J. Weinstein, PRD 46, 4868 (1992)
T. Barnes and E. S. Swanson, PRC 49, 1166 (1994)

2. The model provides theoretical framework to study
temperature dependence of dissociation cross sec-

tions.

Disadvantages

1. Non-relativisitc wave functions.

Relativistic formulation initiated
C.Y. Wong and H. Crater, Phys. Rev. 63, 044907 (2001)

2. Chiral symmetry not part of the dynamics



Relativistic Two-body Bound State Problem

e Fully four-dimensional Bethe-Salpeter equation for a
bound state is difficult to solve because of the diffi-
culty dealing with relative time. It is necessary to

reduce it to have a three-dimension reduction.

e One consistent way to reduce it is by using Dirac’s

constraint dynamics,

e Constraint dynamics is equivalent to solving the

BethesSalpeter equation subject to a constraint.

[Dirac, Todorov, Crater, van Alstine, Sazdjian, ...




Truncation of the Bethe-Salpeter Equation

The Bethe-Salpeter equation has the symbolic form
¢ = KG,G29

¢ i1s the Bethe-Salpeter wave function, K the Bethe-

Salpeter kernel, and {(;} the constituent Green function

1

Consider two-equal mass constituents, the standard

three-dimensional truncation

e i(ﬁgl)_ m3 + 0’

where p= (p1 —p2)/2, P =p+ po,
pL=p—(p-P)P/P?,

and the replacement of the Bethe-Salpeter wave function

f(py)
pi — mi + p§ — m3 + 10

¢ =Y.



The choice f =1 —  Dirac’s constraint dynam-
ics. It lead to the following truncated Bethe-Salpeter

equation
[pf —mi + ps — mj + K'(zy21)| ¥(z122) = 0

(1 — p2) - (p1 + p2)| ¥(T122) = O
This set of coupled equation can be recombined to form

a set of two equations as a constraint on the mass shell

of each particle
! — m; + ®ra(zy2))| Y(2122) =0 fori=1,2.

The above set of equation is then the equation of con-

straint dynamics.




The relativistic N-body Hamiltonian is

N 1 N N O,
H=3% —(p} —m;) — B

El 2m,; Py = mi) igl i %‘::-.-f. 2144

N 1 12 2 PJ hT

-Ei 2m; P ) 151 j _}Z‘;:-i J

The dynamics of the relativistic N-body system is deter-

mined by the search for the state |) > such that
A ) N N
Hlp >={ £ —(pf — mj) — Py Ei VijHy >=0.

=1 Bm.,-_

Advantages

e The quadratic form of the momentum operators p;
in the N-body Hamiltonian equation makes it easy
to manipulate the momentum terms to obtain the
center-of-mass momentum and other relative mo-

menta.

e The potential term in the equation appears in a
way similar to that in which it appears in the non-

relativistic case.




Relativistic Reaction of Two Mesons
'W!hj X Crud‘#:fHeﬂw céz,
Each particle is subject to a constraint: owen (244)

H; = pf - mf + E_@ij(a:ij), = 1,2,3,4
151
Total Hamiltonian 1s

2 2 2 2 2 2
—m —m —m —m
2m, 2my 2msy 2my

where V;; = ®;;(xij1)/2uij. There are two ways to split

this Hamiltonian

H= HD 4 th
. pl-mi pi—mj pi—mj  pi—m;
H, = V, Vi
o(prior) g 2 +Via + o + T TI-
Vim(prior) = Vig + Vig + Vag + Vay |
 pem? pi-md p2 — m} a2 Il
Hy(post) = L4588 L Vi + 3 2RV,
o(post) o s 14 S + 2y + Vas

Vim(post) = Via + Vig + Vas + Vi
It is easy to prove that
(C(14) D(32)|Vim(prior)| A(12) B(34))
(C(14) D(32)| Ho(prior) + Viw(prior)| A(12) B(34))
= (C(14) D(32)| Ho(post) + Viu(post)| A(12) B(34))
= (C(14) D(32)|Vim(post)|A(12) B(34))
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