An Instanton Induced Interaction

in a relativistic constituent quark model of baryons

Bernard Metsch

Helmholtz-Institut für Strahlen– und Kernphysik Universität Bonn Nußallee 14-16, D-53115 Bonn, GERMANY

e-mail: metsch@itkp.uni-bonn.de

Outline

- Instantons in QCD:
 - χSB
 - $U_A(1)$ -problem
- instanton induced quark interaction:
 - $q\bar{q}$ -interaction: (pseudo)scalars
 - *qq*-interaction: octet-decuplet-splitting
- a relativistic constituent quark model:
 - basic assumptions and approximations: $BSE \rightarrow SE$
 - parameterisation of confinement
- results:
 - mass spectra: Regge trajectories, parity doublets
 - e.m properties; form factors and helicity amplitudes
 - strong decays

Instantons

leimholtz-Institut

Yang-Mills lattice simulations

- Gas of instantons: $\langle size \rangle \approx 0.3$ -0.4 fm; $\langle separation \rangle \approx 0.9$ -1.0 fm;
- χ -symmetry breaking
 - effective interaction
 - $\langle \bar{q}q \rangle \neq 0$
 - constituent quark masses

effective masses and interaction

after normal ordering: ٠

Helmholtz-Institut und Ketrohvik

(pseudo)scalar mesons

 \leftarrow

Heimholtz-Institut

fürStahlen- und Keitiphysik

The instanton-induced qq-interaction

In $qq, C = \bar{3}$ -channel \rightarrow instantaneous potential: 't Hooft's interaction (induced by instantons):

$$\begin{split} V^{(2)}_{\text{'t Hooft}}(\mathbf{x_1} - \mathbf{x_2}) &= \underbrace{\delta^{(3)}(\mathbf{x_1} - \mathbf{x_2})}_{\text{point-interaction}} \cdot \\ &-4\underbrace{\left(g_{nn} \ \mathcal{P}^{\mathcal{F}}_{\mathcal{A}}(nn) + g_{ns} \ \mathcal{P}^{\mathcal{F}}_{\mathcal{A}}(ns)\right)}_{\text{flavour-dependent coupling}} \left[\mathbbm{I} \otimes \mathbbm{I} + \gamma^5 \otimes \gamma^5 \right] \ \mathcal{P}^{\mathcal{D}}_{S_{12}=0} \end{split}$$

G. 't Hooft, Phys. Rev. D 14, 3432 (1976)

M. A. Shifman, A. I. Vainstein, V. I. Zakharov, Nucl. Phys. B 163, 46 (1980)

- flavour-dependent: $\mathcal{P}_{\mathcal{A}}^{\mathcal{F}}$: flavour-antisymmetric quark pairs.
- spin-dependent: $\mathcal{P}_{S_{12}=0}^{\mathcal{D}}$: antisymmetric in spin $S_{12}=0$.
- point-interaction: $\delta^{(3)}(\mathbf{x_1} \mathbf{x_2}) \longrightarrow \frac{1}{\lambda^3 \pi^{\frac{3}{2}}} \exp\left(-\frac{|\mathbf{x_1} \mathbf{x_2}|^2}{\lambda^2}\right)$

 \Rightarrow does <u>not</u> act on: flavour-decuplet, spin-symmetric states;

 \Rightarrow no $\vec{L} \cdot \vec{S}$, no tensor forces.

Helmholtz-Institu

a relativistic quark model: assumptions

Pretend to describe baryons in the framework of quantum field theory: Basic quantities: **Bethe-Salpeter amplitudes**

 $\chi_{\bar{P}}(x_1, x_2, x_3) := \langle 0 | T \Psi(x_1) \Psi(x_2) \Psi(x_3) | \bar{P} \rangle$

(with $\bar{P} = p_1 + p_2 + p_3$; $\bar{P}^2 = M^2$ baryon mass; $\Psi(x_i)$ quark field operator) which fulfill the **Bethe-Salpeter Equation**:

Full quark propagators:

 $S^{F}(x - x') = \langle 0 | T\Psi(x)\bar{\Psi}(x') | 0 \rangle$

Irreducible 2- and 3 -body interaction kernels:

momentum space

From Poincaré invariance:

$$\chi_{\bar{P}}(x_1, x_2, x_3) = e^{-iX\bar{P}} \int \frac{d^4 p_{\xi}}{(2\pi)^4} \, \frac{d^4 p_{\eta}}{(2\pi)^4} \, e^{-ip_{\xi}\xi} \, e^{-ip_{\eta}\eta} \chi_{\bar{P}}(p_{\xi}, p_{\eta})$$

\Rightarrow 8-dimensional integral equation

$$\chi_{\bar{P}}(p_{\xi}, p_{\eta}) = S_{1}^{F}(\frac{1}{3}\bar{P} + p_{\xi} + \frac{1}{2}p_{\eta}) \otimes S_{2}^{F}(\frac{1}{3}\bar{P} - p_{\xi} + \frac{1}{2}p_{\eta}) \otimes S_{3}^{F}(\frac{1}{3}\bar{P} - p_{\eta})$$

$$\times (-i) \int \frac{d^{4}p'_{\xi}}{(2\pi)^{4}} \frac{d^{4}p'_{\eta}}{(2\pi)^{4}} K(\bar{P}, p_{\xi}, p_{\eta}, p'_{\xi}, p'_{\eta}) \chi_{\bar{P}}(p'_{\xi}, p'_{\eta})$$

with integral kernel: $K = K^{(3)} + \overline{K}^{(2)}$,

$$\bar{K}^{(2)}(\bar{P}, p_{\xi}, p_{\eta}, p_{\xi}', p_{\eta}') := \sum_{(123)} K^{(2)}(P_{12}, p_{\xi}, p_{\xi}') \otimes [S_3^F(\frac{1}{3}\bar{P} - p_{\eta})]^{-1}(2\pi)^4 \delta^{(4)}(p_{\eta} - p_{\eta}')$$

Bethe-Salpeter Equation, approximations...

Model assumptions (inspired by NonRelativistic Constituent Quark Model):

• Free quark propagators replace full propagators:

$$S_i^F(p_i) \approx rac{i}{\gamma(p_i) - m_i + i\epsilon}$$

 $ightarrow m_i$ effective constituent quark masses

• Instantaneous approximation: No dependence of interaction kernels on p_{ξ}^0 und p_{η}^0 (in the restframe of the baryon):

$$K^{(3)}(\bar{P}, p_{\xi}, p_{\eta}, p'_{\xi}, p'_{\eta}) \mid_{\bar{P}=(M,\vec{0})} = V^{(3)}(\mathbf{p}_{\xi}, \mathbf{p}_{\eta}, \mathbf{p}'_{\xi}, \mathbf{p}'_{\eta})$$
$$K^{(2)}(P_{12}, p_{\xi}, p'_{\xi}) \mid_{\bar{P}=(M,\vec{0})} = V^{(2)}(\mathbf{p}_{\xi}, \mathbf{p}'_{\xi})$$

⇔ 'Retardation effects are neglected'

$$\Rightarrow \text{Salpeter amplitude} \left| \Phi_M(\mathbf{p}_{\xi}, \mathbf{p}_{\eta}) := \int \frac{dp_{\xi}^0}{2\pi} \frac{dp_{\eta}^0}{2\pi} \chi_{\bar{P}} \left((p_{\xi}^0, \mathbf{p}_{\xi}), (p_{\eta}^0, \mathbf{p}_{\eta}) \right) \right|_{\bar{P} = (M, \mathbf{0})}$$

satisfies the Salpeter equation $\mathcal{H}\Phi_M = M\Phi_M; \quad \langle \Phi_M | \Phi_M \rangle = 2M$

Salpeter Equation, Salpeter Hamiltonian

... approximate treatment of $V^{(2)}$...:

$$\begin{split} (\mathcal{H}\Phi_{M})(\mathbf{p}_{\xi},\mathbf{p}_{\eta}) &= \sum_{i=1}^{3} H_{i} \ \Phi_{M}(\mathbf{p}_{\xi},\mathbf{p}_{\eta}) \\ &+ \ \left(\Lambda_{1}^{+} \otimes \Lambda_{2}^{+} \otimes \Lambda_{3}^{+} + \Lambda_{1}^{-} \otimes \Lambda_{2}^{-} \otimes \Lambda_{3}^{-}\right) \\ &\gamma^{0} \otimes \gamma^{0} \otimes \gamma^{0} \int \frac{d^{3}p'_{\xi}}{(2\pi)^{3}} \ \frac{d^{3}p'_{\eta}}{(2\pi)^{3}} \ V^{(3)}(\mathbf{p}_{\xi},\mathbf{p}_{\eta},\mathbf{p}'_{\xi},\mathbf{p}'_{\eta}) \ \Phi_{M}(\mathbf{p}'_{\xi},\mathbf{p}'_{\eta}) \\ &+ \ \left(\Lambda_{1}^{+} \otimes \Lambda_{2}^{+} \otimes \Lambda_{3}^{+} - \Lambda_{1}^{-} \otimes \Lambda_{2}^{-} \otimes \Lambda_{3}^{-}\right) \\ &\gamma^{0} \otimes \gamma^{0} \otimes \mathbb{I} \ \int \frac{d^{3}p'_{\xi}}{(2\pi)^{3}} \ \left[V^{(2)}(\mathbf{p}_{\xi},\mathbf{p}'_{\xi}) \otimes \mathbb{I}\right] \ \Phi_{M}(\mathbf{p}'_{\xi},\mathbf{p}_{\eta}) \\ &+ \ \operatorname{cycl. \, perm. \, (123)} \end{split}$$

•
$$\Lambda_i^{\pm}(\mathbf{p_i}) := \frac{\omega_i \pm H_i}{2\omega_i}$$
 Energy projectors
• $H_i(\mathbf{p_i}) := \gamma^0 (\boldsymbol{\gamma} \cdot \mathbf{p_i} + m_i)$ Dirac Hamiltonian

Confinement

Quark confinement is realized by a phenomenological string potential for 3 quarks (*Ansatz* similar to NRCQM):

In contrast to the nonrelativistic quark model the relativistic quasi-potential $V_{\text{Conf}}^{(3)}$ depends on the Dirac structure for three quarks. We choose:

$$\mathbf{A}_{3} = \mathbf{a} \ \frac{3}{4} \Big[\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} + \gamma^{0} \otimes \gamma^{0} \otimes \mathbf{1} + \gamma^{0} \otimes \mathbf{1} \otimes \gamma^{0} + \mathbf{1} \otimes \gamma^{0} \otimes \gamma^{0} \Big]$$

$$\mathbf{B}_{3} = \mathbf{b} \ \frac{1}{2} \Big[-\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1} + \gamma^{0} \otimes \gamma^{0} \otimes \mathbf{1} + \gamma^{0} \otimes \mathbf{1} \otimes \gamma^{0} + \mathbf{1} \otimes \gamma^{0} \otimes \gamma^{0} \Big]$$

- \rightarrow Spin-orbit effects are small (compatible with exp.)
- \rightarrow Regge trajectories are quantitatively correct.

Model parameters

		parameter	value	
quark-	'nonstrange'	m_n	330 Mev	
masses	'strange'	m_s	670 Mev	
confinement	offset	a	-744 MeV	
	slope	\boldsymbol{b}	470 MeV fm $^{-1}$	
't Hooft's	nn-coupling	g_{nn}	136.0 MeV fm 3	
force	ns-coupling	<i>g_{ns}</i> 94.0 MeV fn		
	effective range	λ	0.4 fm	

Parameters are fixed by

- the \triangle -Regge trajectory
 - \longrightarrow Confinement parameters a, b and m_n
- baryon ground-states (octet und decuplet)
 - $\longrightarrow g_{nn},\,g_{ns},\,\lambda$ and m_s

Δ -Regge trajectory

Δ -resonances

Helmholtz-Institut fürStahler- und Ketphysik

Instanton-induced effects in the N^{*+} -spectrum

Heimholtz-Institut

N*2002 Pittsburgh, 08-13.10.2002 – p.15

Instanton-induced effects in the N^{*-} **-spectrum**

Heimholtz-Institut fürStahlen- und Kettphydik

N-Regge trajectory

Heimholtz-Institut

 \rightarrow 't Hooft's force produces a constant shift in M^2

Furthermore, parity doublets in the nucleon spectrum

Parity doublets (high spin)

Heimholtz-Institut fürStehler- und Kettphysik

$\textbf{BSE} \leftrightarrow \textbf{NRCQM}(V_{\texttt{conf.}} + V_{III})$

Heimholtz-Institut fürStahler- und Ketephysik

Relativistic effects

Effects of 't Hooft's force in two different confinement models

$$V_{\text{conf}}^{(3)}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) = 3 \mathbf{a} \frac{1}{4} \left[\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^0 \otimes \gamma^0 \otimes \mathbb{I} + \text{cycl. perm.} \right]$$

Modell A (discussed so far) + $b \sum_{i < j} |\mathbf{x_i} - \mathbf{x_j}| = \frac{1}{2} \left[-\mathbb{I} \otimes \mathbb{I} + \gamma^0 \otimes \gamma^0 \otimes \mathbb{I} + \text{cycl. perm.} \right]$

$$V_{\rm conf}^{(3)}(\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}) = \left[3\mathbf{a} + \mathbf{b} \sum_{i < j} |\mathbf{x_i} - \mathbf{x_j}| \right] \quad \frac{1}{4} \left[\mathbb{I} \otimes \mathbb{I} \otimes \mathbb{I} + \gamma^0 \otimes \gamma^0 \otimes \mathbb{I} + \text{cycl. perm.} \right]$$

Modell B (alternative)

Although both models give exactly the same results in the nonrelativistic limit, large differences appear in a fully relativistic treatment (Salpeter equation) !

Example: Roper resonance position ...

interplay of confinement and instanton effects...

 "Correct" mass splittings result from a specific interplay of relativistic effects, the Dirac structure of the confinement potential and 't Hooft's interaction

 A reliable test of a residual interaction in fact requires a fully relativistic treatment

Heimholtz-Institut

Electromagnetic and strong coupling amplitudes

Mandelstam formalism: Matrix element in initial state rest frame (IA):

$$\langle B\bar{P}_{B}|J^{\mu}(0)|B^{*}M\rangle = -3\int \frac{\mathrm{d}^{4}p_{\xi}}{(2\pi)^{4}} \frac{\mathrm{d}^{4}p_{\eta}}{(2\pi)^{4}} \overline{\Gamma}_{\bar{P}}(p_{\xi}',p_{\eta}') S_{F}^{1}(p_{1}) \otimes S_{F}^{2}(p_{2}) \otimes S_{F}^{3}(p_{3}') \hat{Q}\gamma^{\mu}S_{F}^{3}(p_{3}) \Gamma_{M}(\vec{p}_{\xi},\vec{p}_{\eta})$$

Reconstruction of the vertex function in the rest frame

$$\Gamma_M(\vec{p}_{\xi}, \vec{p}_{\eta}) = -i \int \frac{\mathrm{d}^3 p'_{\xi}}{(2\pi)^3} \frac{\mathrm{d}^3 p'_{\eta}}{(2\pi)^4} \, \boldsymbol{V}(\vec{p}_{\xi}, \vec{p}_{\eta}, \vec{p}'_{\xi}, \vec{p}'_{\eta}) \Phi_M(\vec{p}'_{\xi}, \vec{p}'_{\eta})$$

Boost
$$(M, \vec{0}) \rightarrow (\sqrt{M^2 + \vec{P}^2}, \vec{P})$$

$$\langle B\bar{P}_B, \pi\bar{P}_\pi | S | B^* M \rangle = -3 \int \frac{\mathrm{d}^4 p_\xi}{(2\pi)^4} \frac{\mathrm{d}^4 p_\eta}{(2\pi)^4}$$

leimholtz-Institu

 $\overline{\Gamma}_{\bar{P}}(p'_{\xi},p'_{\eta}) S^{1}_{F}(p_{1}) \otimes S^{2}_{F}(p_{2}) \otimes S^{3}_{F}(p'_{3}) \overline{\Gamma}(p) S^{3}_{F}(p_{3}) \Gamma_{M}(\vec{p}_{\xi},\vec{p}_{\eta})$

mesonic Bethe-Salpeter amplitudes from (M.Koll et al., Eur. Phys. J. A 9, 73 (2000))

Static electromagnetic properties

from $Q^2 \rightarrow 0$ -limit of form factors:

	Calc.	Exp.	
$\mu_p \ \mu_n$	$2.74 \mu_N \ -1.70 \mu_N$	$2.793 \mu_N \ -1.913 \mu_N$	(PDG) (PDG)
$\sqrt{\langle r^2 angle_E^p} \ \langle r^2 angle_E^n$	$0.82~{ m fm}$ $0.11~{ m fm}^2$	$0.847~{ m fm}$ $0.113\pm0.004~{ m fm}^2$	(MMD) (MMD)
$\sqrt{rac{\langle r^2 angle_M^p}{\sqrt{\langle r^2 angle_M^n}}}$	0.91 fm 0.86 fm	0.836 fm 0.889 fm	(MMD) (MMD)
$rac{g_A}{\sqrt{\langle r^2 angle_A}}$	1.21 0.62 fm	1.2670 ± 0.0035 0.61 ± 0.01 fm	(PDG) (Bernard)

MMD: Mergell, Meißner, Drechsel Bernard: Bernard, Elouadrhiri, Meißner

Octet magnetic moments

from "expectation values" of local operators with S.A.:

Electric form factor of proton and neutron

Heimholtz-Institut

Electric form factor of proton and neutron

Magnetic form factor of proton and neutron

Electroweak nucleon form factors

Photoncouplings $[10^{-3} \text{GeV}^{-\frac{1}{2}}]$

state		Calc	PDG		Calc	PDG
$P_{33}(1232)$	$A_{1/2}^{N}$	-89	-135 ± 6			
	$A^{\acute{N}}_{3/2}$	-152	-255 ± 8			
$S_{11}(1535)$	$A_{1/2}^{p}$	113	90 ± 30	$A_{1/2}^{n}$	-75	-46 ± 27
$S_{11}(1650)$	$A_{1/2}^{p}$	6	53 ± 16	$A_{1/2}^{n}$	-22	-15 ± 21
$D_{13}(1520)$	$A_{1/2}^{p}$	-53	-24 ± 9	$A_{1/2}^{n}$	1	-59 ± 9
	$A_{3/2}^{p'}$	51	166 ± 5	$A_{3/2}^{n}$	-52	-139 ± 11
$D_{13}(1700)$	$A_{1/2}^{p}$	-18	-18 ± 13	$A_{1/2}^{n}$	23	0 ± 50
	$A_{3/2}^{p'}$	-14	-2 ± 24	$A_{3/2}^{n}$	-60	-3 ± 44
$D_{15}(1675)$	$A_{1/2}^{p}$	5	19 ± 8	$A_{1/2}^{n}$	-35	-43 ± 12
	$A_{3/2}^{p'}$	7	15 ± 9	$A_{3/2}^{n}$	-47	-58 ± 13
$P_{11}(1440)$	$A_{1/2}^{p}$	-48	-65 ± 4	$A_{1/2}^{n}$	27	40 ± 10
$S_{31}(1620)$	$A_{1/2}^{N}$	18	27 ± 11			
$D_{33}(1700)$	$A_{1/2}^{N}$	63	104 ± 15			
	$A^{\acute{N}}_{3/2}$	68	85 ± 22			

Transition form factors

Nucleon Delta transition

Helicity amplitudes

Strong decay widths

 $N\pi$ decay widths Γ [MeV]

 $\Delta \pi$ decay widths Γ [MeV]

Decay	Calc	${}^{3}P_{0}$	PDG	Decay	Calc	${}^{3}P_{0}$	PDG
$S_{11}(1535) \to N\pi$	33	216	$(68 \pm 15) {+45 \atop -23}$	$\rightarrow \Delta \pi$	1	2	< 2
$S_{11}(1650) \rightarrow N\pi$	3	149	$(109 \pm 26)^{+29}_{-4}$	$\rightarrow \Delta \pi$	5	13	$(6 \pm 5) {}^{+2}_{0}$
$D_{13}(1520) \rightarrow N\pi$	38	74	$(66 \pm 6) \ {}^{+8}_{-5}$	$\rightarrow \Delta \pi$	35	35	$(24 \pm 6) \ {}^{+3}_{-2}$
$D_{13}(1700) \rightarrow N\pi$	0.1	34	$(10 \pm 5) \ ^{+5}_{-5}$	$\rightarrow \Delta \pi$	88	778	seen
$D_{15}(1675) \rightarrow N\pi$	4	28	$(68 \pm 7) \ ^{+14}_{-5}$	$\rightarrow \Delta \pi$	30	32	$(83 \pm 7) \begin{array}{c} +17 \\ -6 \end{array}$
$P_{11}(1440) \to N\pi$	38	412	$(228 \pm 18)^{+65}_{-65}$	$\rightarrow \Delta \pi$	35	11	$(88 \pm 18) {+25 \atop -25}$
$P_{33}(1232) \to N\pi$	62	108	$(119 \pm 0) {+5 \atop -5}$				
$S_{31}(1620) \rightarrow N\pi$	4	26	$(38 \pm 7) {+8 \atop -8}$	$\rightarrow \Delta \pi$	72	18	$(68 \pm 23) {+14 \atop -14}$
$D_{33}(1700) \rightarrow N\pi$	2	24	$(45 \pm 15) {}^{+15}_{-15}$	$\rightarrow \Delta \pi$	52	262	$(135 \pm 45)^{+45}_{-45}$

 ${}^{3}P_{0}$: S. Capstick, W. Roberts, Phys.Rev. D49 (1994) 4570-4586