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, recover perturbative QCD.

�

For ��� � �� 	

, incorporates the exclusively
non-perturbative aspects of QCD.�

Quark and gluon degrees of freedom.
Hadrons are composites of quarks and gluons.
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DSEs provide non-perturbative, continuum framework

�

Relativistic (quantum field theory).�

For ��� � �� �

, recover perturbative QCD.

�

For ��� � �� 	

, incorporates the exclusively
non-perturbative aspects of QCD.�

Quark and gluon degrees of freedom.�

Explore implications on hadron observables:
dynamical chiral symmetry breaking,
confinement of quarks and gluons,
IR behavior of � � � ��

, 
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Quark Dyson-Schwinger Equation

The simplest DSE gives dressed quark propagator,

� �� � � ��� �� � ��� �� � �� � � �� ��

is the “running quark mass.”
is the “wave-function renormalization.”
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Quark Dyson-Schwinger Equation

The simplest DSE gives dressed quark propagator,

� �� � � ��� �� � ��� �� � �� � � �� ��
where the quark self-energy

�� �

is

�� � � �
�

� ���
��� �� � ��� � �� � �� �� � � �  � � � �� � � 


Σ
=

D

γ
ΓS
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� �� � � ��� �� � ��� �� � �� � � �� ��
Lorentz covariance gives general form:

� �� � � 	

! ��" � # �� � �

�� ��

! � " � �� �� 


�� ��

is the “running quark mass.”�� ��

is the “wave-function renormalization.”

Recent Advances in Dyson-Schwinger Studies – p.3/43



Five Aspects of Solving the Quark DSE

1. Integral is divergent, must be renormalized.
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Five Aspects of Solving the Quark DSE

1. Integral is divergent, must be renormalized.

$ �� � �%� � � �� & � � �
�

'
( �)�

� �� � � � �� � � �  � � � �� * � � 


1) Regulate integrals w/ Poincaré-invariant .
2) Theory depends on scale : e.g., # � �

.
2) Introduce counter-terms

+ # � �
.

3) Combine terms so we have finite,
-independent “renormalized” # � &� .

example:

�� � & � � � $ �� � � � * $ � &� � � 


4) Renormalized parameters fixed at � � � & �.
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2) Theory depends on scale : e.g., # � �

.
2) Introduce counter-terms
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.

3) Combine terms so we have finite,
-independent “renormalized” # � &� .

example:

�� � & � � � $ �� � � � * $ � &� � � 


4) Renormalized parameters fixed at � � � & �.
Resolved years ago.
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Five Aspects of Solving the Quark DSE

1. Integral is divergent, must be renormalized.

2. Non-linear:

�� �

depends on

� �� �

.

Analytic solutions are very difficult.
No uniqueness of solutions.
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Five Aspects of Solving the Quark DSE

1. Integral is divergent, must be renormalized.

2. Non-linear:

�� �

depends on
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.

3. Weak coupling perturbative QCD.

 �

small:

�� �� � # � 	 " " " � , - �* �

� �� � � . /10 2346587 0 9 : / 0 23 ; - �* <45 7 0 9 , 

One recovers usual perturbative-QCD results.
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2.) Nambu-Goldstone mode:
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.? Quark gains large mass even when # � �
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Five Aspects of Solving the Quark DSE

1. Integral is divergent, must be renormalized.

2. Non-linear:

�� �

depends on

� �� �

.

3. Weak coupling perturbative QCD.

4. Strong dynamical = symmetry breaking.

5. DSE depends on unknown � � �� �
and

� � �� � � �

.

�� � � �
�

� ���
��� �� � ��� � �� � � � �� � � �  � � � �� � � 


These are solutions of other DSEs!
Once we have them, we solve quark DSE.
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Coupled-nature of Dyson-Schwinger Equations

To obtain dressed quark propagator
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These functions depend on higher @-point functions,
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DSEs form an infinite set of coupled integral equations!

Recent Advances in Dyson-Schwinger Studies – p.5/43



Coupled-nature of Dyson-Schwinger Equations

To obtain dressed quark propagator

� �� �

, one needs
1.) two-point dressed gluon propagator � � �� �
2.) three-point dressed quark-gluon vertex
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These functions depend on higher @-point functions,
which in turn depend on still higher @-point functions.

DSEs form an infinite set of coupled integral equations!

Proceed by truncating the system of equations.
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Truncation of Dyson-Schwinger Equations

“DSEs form an infinite set of coupled integral equations”

This is the “rainbow approximation.” Requires

pheonomological guidance from experiments!
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Truncation of Dyson-Schwinger Equations

“DSEs form an infinite set of coupled integral equations”

? Truncation schemes reduce the number of DSEs. ?

This is the “rainbow approximation.” Requires

pheonomological guidance from experiments!
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Rainbow Truncation

The simplest truncation scheme is

 � � � �A � � + � � A � A �
A � �A ���

� � �� � � � � ���
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Rainbow Truncation

The simplest truncation scheme is
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Here,

�A ��

is phenomenological input.
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Rainbow Truncation

The simplest truncation scheme is

 � � � �A � � + � � A � A �
A � �A ���
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Insert picture of rainbow expansion here.

�� � � �
�

� ���
�� �� � B ��� � �� � ��� * � " A � �� � � " A C �A ��
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Rainbow Truncation

The simplest truncation scheme is

 � � � �A � � + � � A � A �
A � �A ���
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Example: Maris-Tandy Model PRC60 055214 (1999)

�A �� � � � �
D E F G H 2I1J 2 � � � � , �A ��

< � KML NPO � 	 A �Q �RS T � �U 
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Non-perturbative enhancement near A � V �

.
Perturbative-gluon tail:

	 Q A �

+ log corrections.
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Solution of

� �� �

in Rainbow Approximation

� �� � �

�� ��

! ��" � �� ��
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Solution of
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� �� � �

�� ��

! ��" � �� ��

0.1 1 10
p [GeV]

10
-4

10
-3

10
-2

10
-1

10
0

Z(p
2
), M(p

2
)  for m(µ) = 0 MeV

Recent Advances in Dyson-Schwinger Studies – p.8/43



Solution of

� �� �

in Rainbow Approximation

� �� � �

�� ��

! ��" � �� ��

0.1 1 10
p [GeV]

10
-4

10
-3

10
-2

10
-1

10
0

Z(p
2
), M(p

2
)  for m(µ) = 10 MeV

Z(p
2
), M(p
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)  for m(µ) = 0 MeV
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Solution of

� �� �

in Rainbow Approximation

� �� � �

�� ��

! ��" � �� ��
Having

� �� �

is only the beginning.
Turn now to calculating

WA A (meson) and

A A A baryon bound states using our Green functions.
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Mesons are

WA A Bound States

Mesons appear as poles in A WA Bethe-Salpeter amp ,

Γ Γ RM

Meson wave-functions are solutions of homogenous BSE.

KΓ ΓS

S

� �� <� � �� � (
� �� <� � � � � �� �� �� <� � � X � <� � �� � �� � �

BS kernel contains all 2PI A WA scattering diagrams.
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Mesons are

WA A Bound States

has infinite interactions of differing topologies

K
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Mesons are

WA A Bound States

has infinite interactions of differing topologies

K

Simplest truncation for is called “ladder”:

K
S

S

ΓΓ
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Mesons are

WA A Bound States

has infinite interactions of differing topologies

K

Simplest truncation for is called “ladder”:

K
S

S

ΓΓ

...
S

S

S

S

S

S

S

S

S

S
Γ Γ
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Calculation of Observables

Having propagators and
BS amplitudes, one may calculate
meson observables.

Example: EM form factor of meson
is probed by scattered electrons.

e e’
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Calculation of Observables

Having propagators and
BS amplitudes, one may calculate
meson observables.

Example: EM form factor of meson
is probed by scattered electrons.

e e’

Form factor calculated from quark structure of meson.
Use dressed-quark propagators

� �� �

, meson amps�Y �� � �

.
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Meson form factor requires evaluating the loop integral

K

Γ

p

p

q

k

k

µ k

K

K

Γ

Γ

K
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Meson form factor requires evaluating the loop integral

K

Γ

p

p

q

k

k

µ k

K

K

Γ

Γ

K

?All of these elements are known. ?
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Pion EM Form Factor

Maris, Tandy PRC61 045202 (2000)

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8
Q

2
  [GeV

2
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
F

π(
Q

2 )

0.0 0.1 0.2

0.7

0.8

0.9

1.0

1.1

BSE, F1−F8

BSE, F1−F5

BC Ansatz

bare vertex
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Other Observables

�

Strong, weak and EM decays of mesons.� � �, � & FZ , [ � �, etc.�

EM form factors of mesons and baryons.�, , [, \

, and the nucleon.�

Deep inelastic scattering from pions.�

Meson spectroscopy.
masses and properties of the light mesons,
heavy mesons and exotic mesons.�

Diffractive meson scattering �� , � , [� , etc.
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Dyson-Schwinger Philosophy 101

Truncate
DSEs

QCD

µν

(k)Γµ

D   (k)
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Dyson-Schwinger Philosophy 101

Truncate
DSEs

QCD

DSEs
Remaining

Solve

µν

(k)Γµ

S(k)

D   (k)
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Dyson-Schwinger Philosophy 101
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Solve
BSEs

µν

(k)Γµ
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Γ (k)π
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Dyson-Schwinger Philosophy 101

πF (Q )2

Truncate
DSEs

QCD

DSEs
Remaining

Solve

Solve
BSEs Observables

Calculate

µν

(k)Γµ

S(k)

Γ (k)π

D   (k)
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Dyson-Schwinger Philosophy 101
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Issues to Resolve in Dyson-Schwinger Framework

1. How robust is the truncation scheme?

I will ignore this question today.
Can approach provide useful predictions?
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formulated in Euclidean space.
How is this theory related to Minkowski space?

I will ignore this question today.
Can approach provide useful predictions?

Recent Advances in Dyson-Schwinger Studies – p.15/43



Issues to Resolve in Dyson-Schwinger Framework

1. How robust is the truncation scheme?
We truncated DSEs to only finitely-many terms.
If more terms maintained, are solutions stable?

2. How does analytic continuation really work?
Like Lattice-QCD, Dyson-Schwinger framework is
formulated in Euclidean space.
How is this theory related to Minkowski space?

3. How important are �-loop corrections?
Most quark-based models ignore �-loops.

I will ignore this question today.
Can approach provide useful predictions?
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Can approach provide useful predictions?
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Goldstone’s Theorem

“If # � �

and

�� �� � �

then #Y � �
.”

Dynamical quark-mass generation is closely linked to
small pion mass.

? Important aspect of nuclear/hadron physics ?

In the chiral limit ( # � �

) the quark DSE is related to

pseudo-scalar BSE by an fundamental identity of quantum

field theory.
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Goldstone’s Theorem

“If # � �

and

�� �� � �

then #Y � �
.”

The axial-vector Ward-Takahashi identity:

� # �^] �� X � * ! � �^] � �� X � � � G < �� 9 � �] �] � G < �� G �

Satisfies a BSE Satisfies a DSE

BSE kernel _ DSE kernel.
Need Goldstone theorem preserving truncation!

?

Rainbow/Ladder truncation preserves Goldstone’s theorem

?
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Robustness of Truncation Scheme

We can now address the first issue.

How robust is the truncation scheme?
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Robustness of Truncation Scheme

We can now address the first issue.

How robust is the truncation scheme?

�

Only truncation schemes that are Goldstone-theorem
preserving should be considered.�

Given a particular choice of DSE kernel, can we
determine the corresponding BSE kernel?�

Rainbow: replace dressed vertex with bare vertex

Σ ` ` ` `` ` ` `` ` ` `` ` ` `` ` ` `` ` ` `
a a aa a aa a aa a aa a a

S

D

Γ
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Robustness of Truncation Scheme

We can now address the first issue.

How robust is the truncation scheme?

�

Only truncation schemes that are Goldstone-theorem
preserving should be considered.�

Given a particular choice of DSE kernel, can we
determine the corresponding BSE kernel?�

Rainbow: replace dressed vertex with bare vertex

Σ S

D

Corresponds to the ladder kernel in BSE.
Recent Advances in Dyson-Schwinger Studies – p.17/43



A first step towards including diagrams beyond rainbow
is to consider  �

corrections to quark-gluon vertex:
i

= +

+

+

+ 1
6

2
1

M

M M

M
Γ
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A first step towards including diagrams beyond rainbow
is to consider  �

corrections to quark-gluon vertex:
i

= +

+

+

+ 1
6

2
1

M

M M

M
Γ

The DSE kernel is a bare vertex plus one-gluon dressing:

Σ
D

S S S

D

D

S
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What is the corresponding kernel for BSE?
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What is the corresponding kernel for BSE?

It can be obtained by cutting quark lines.
Bender, Roberts and Smekal PLB 380 7 (1996)
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What is the corresponding kernel for BSE?

It can be obtained by cutting quark lines.
Bender, Roberts and Smekal PLB 380 7 (1996)

? Systematic method: BSE DSE kernel. ?

Recent Advances in Dyson-Schwinger Studies – p.19/43



Impact of Dressing Vertex to

�  ��

Truncation scheme is robust observables are stable to
inclusion of higher order corrections.
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inclusion of higher order corrections.

Solve the Bethe-Salpeter equation for A WA bound state

� �� X � � � ���
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b � �� *
� ���
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Impact of Dressing Vertex to

�  ��

Truncation scheme is robust observables are stable to
inclusion of higher order corrections.

Solve the Bethe-Salpeter equation for A WA bound state

� �� X � � � ���
��� �� � �� � � � � �� 9 � � �� G � � �� X �

b � �� *
� ���

��� �� � �� � � � � �� 9 � � �� G � � �� X � � �

If eigenvalue

b � �� � 	
, bound state has � c � c

.
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�, [ and diquarks to

�  ��

and

�  ��

Bender, Roberts and Smekal, PLB 380 7 (1996)
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Higher-Order Corrections in DSE

Recent work has extended this to all orders in  �6d
:

Bender, Detmold, Roberts and Thomas PRC65 065203 (2002)

e fg hi jlk gnm kpo q r
k g kpo

s g soe f ij s gm so q

This DSE gives ladder of gluon-exchange corrections.
Use “cutting procedure” to determine BS kernel .
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Higher-Order Corrections in BSE

The corresponding BSE kernel is very complicated!

tvu wx yz|{
t u

} ~ �� z�� {

� �������

� � ����� ��

� � �
���� ��

�

� ����� ���
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�, [ and diquarks to

�A ��� 
 
 
� �  � �

Bender, Detmold, Roberts and Thomas PRC65 065203 (2002)

-4 -2 0 2 4
s

-4

-3

-2

-1

0

1

2
de

t@HHsL
-

ID

Bare
1 loop
2 loop
Recursive

0-1-

Mesons: � � � G and [ � 	 G .
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�, [ and diquarks to
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Bender, Detmold, Roberts and Thomas PRC65 065203 (2002)
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Summary: Robustness of Truncation

1. Mesons ( �, [) are robust to change in truncation.
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Summary: Robustness of Truncation

1. Mesons ( �, [) are robust to change in truncation.

2. Lowest order truncation that preserves Goldstone
theorem is rainbow/ladder.

Terms beyond rainbow/ladder little impact.
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Summary: Robustness of Truncation

1. Mesons ( �, [) are robust to change in truncation.

2. Lowest order truncation that preserves Goldstone
theorem is rainbow/ladder.

3. Higher-order terms highly repulsive for diquarks.
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Summary: Robustness of Truncation

1. Mesons ( �, [) are robust to change in truncation.

2. Lowest order truncation that preserves Goldstone
theorem is rainbow/ladder.

3. Higher-order terms highly repulsive for diquarks.
Removes diquarks from hadron spectrum.
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Summary: Robustness of Truncation

1. Mesons ( �, [) are robust to change in truncation.

2. Lowest order truncation that preserves Goldstone
theorem is rainbow/ladder.

3. Higher-order terms highly repulsive for diquarks.

Question of robustness of truncation is mostly resolved.
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Issues for Dyson-Schwinger

1. How robust is the truncation scheme?

2. How does analytic continuation really work?

3. How important are �-loop corrections?

4. Recent progress made on baryons.
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Formulation in Euclidean space

Consider a particle with

�

-momentum,W� � � ���� � � W� � W� � � �� " �� * � � �

Minkowski� � � ���� � � �� � � � ��� " ��� � � � � �

Euclidean
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Formulation in Euclidean space

Consider a particle with

�

-momentum,W� � � ���� � � W� � W� � � �� " �� * � � �

Minkowski� � � ���� � � �� � � � ��� " ��� � � � � �

Euclidean

In Minkowski space,

W� � W� � � * # �,

� � # � ��� " ��
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Formulation in Euclidean space

Consider a particle with

�

-momentum,W� � � ���� � � W� � W� � � �� " �� * � � �

Minkowski� � � ���� � � �� � � � ��� " ��� � � � � �

Euclidean

This is achieved in Euclidean space (� � � � � �
)

at the expense of reality of � � . Let � � !

, then

�� " �� * � � * # � � � 


Dyson-Schwinger framework is based on Euclidean QFT.

“Analytic continuation” needed to make contact with reality.
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Why Euclidean space?

�

Dyson-Schwinger framework is a Euclidean quantum
field theory based on Wightmann axioms.
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Why Euclidean space?

�

Dyson-Schwinger framework is a Euclidean quantum
field theory based on Wightmann axioms.

very complicated!
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Why Euclidean space?

�

Dyson-Schwinger framework is a Euclidean quantum
field theory based on Wightmann axioms.�

Schwinger functions

� �� �

, � � �� �

, " " " with
� � � �

.�

Certain Schwinger functions may be analytically
continued to Minkowski,

K� ���� - G � �
�� <� � �� ��� � � �� � � �¡ ¢£ ¤ � K¡ �
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Advantages of a Euclidean Formulation

�

Even if renormalization is done perturbatively
integrals are calculated in Euclidean space
Wick rotations move us back and forth.
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Advantages of a Euclidean Formulation

�

Even if renormalization is done perturbatively
integrals are calculated in Euclidean space
Wick rotations move us back and forth.�

Non-perturbative case: Wick rotation not valid.
We work entirely within Euclidean space.�

Lattice calculations are done in Euclidean space.
Our Green functions closely related to theirs.

What type of behavior do we expect for

� �� �

?
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Studies of QCD on a lattice find that quark propagator is
easily parametrized as pairs of complex-conjugate
poles,

�� d � #d � ¥ ¦

. Bowman, Heller, Leinweber, Williams 2002

In general #d � #d § ! #d ¨,

� �� � �
©

dª <
� d

! ��" � #d

� \d
! ��" � # \d
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Studies of QCD on a lattice find that quark propagator is
easily parametrized as pairs of complex-conjugate
poles,

�� d � #d � ¥ ¦

. Bowman, Heller, Leinweber, Williams 2002

In general #d � #d § ! #d ¨,

� �� � �
©

dª <
� d

! ��" � #d

� \d
! ��" � # \d




#d ¨ � � �Q �

finite lifetime for quark.#d ¨ � � * �Q �

negative? Unphysical!
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Studies of QCD on a lattice find that quark propagator is
easily parametrized as pairs of complex-conjugate
poles,

�� d � #d � ¥ ¦

. Bowman, Heller, Leinweber, Williams 2002

In general #d � #d § ! #d ¨,

� �� � �
©

dª <
� d

! ��" � #d

� \d
! ��" � # \d




#d ¨ � � �Q �

finite lifetime for quark.#d ¨ � � * �Q �

negative? Unphysical!

? No observable violation of unitarity ?

Bhagwat, Pichowsky & Tandy (2002)Recent Advances in Dyson-Schwinger Studies – p.30/43



Our quark propagator parametrization:
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Poles in Bethe-Salpeter Equation

Consider impact of complex-conj quark poles in BSE

b � �� � �� X � � � ��
�� �� � �� � � X � � �� 9 � � �� G � � �� X ��

�
�

�
� � � � ¼� �� � � X �

�� � 9 & � ! �� �� � G & � ! ��

with

� � � �� � � � ½¾ � �

, and

� �¿ � �� < � � � � �

.
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Poles in Bethe-Salpeter Equation

Consider impact of complex-conj quark poles in BSE

b � �� � �� X � � � ��
�� �� � �� � � X � � �� 9 � � �� G � � �� X ��

�
�

�
� � � � ¼� �� � � X �

�� � 9 & � ! �� �� � G & � ! ��

with

� � � �� � � � ½¾ � �

, and

� �¿ � �� < � � � � �

.
Continuing to Minkowski space

� * �

,

� �¿ ¥ ¦

.
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Poles in Bethe-Salpeter Equation

Consider impact of complex-conj quark poles in BSE

b � �� � �� X � � � ��
�� �� � �� � � X � � �� 9 � � �� G � � �� X ��

�
�

�
� � � � ¼� �� � � X �

�� � 9 & � ! �� �� � G & � ! ��

with

� � � �� � � � ½¾ � �

, and

� �¿ � �� < � � � � �

.
Continuing to Minkowski space

� * �

,

� �¿ ¥ ¦

.

� � *
�

� ! � ½¾ � & � ! � � �
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Poles in Bethe-Salpeter Equation

Consider impact of complex-conj quark poles in BSE

b � �� � �� X � � � ��
�� �� � �� � � X � � �� 9 � � �� G � � �� X ��

�
�

�
� � � � ¼� �� � � X �

�� � 9 & � ! �� �� � G & � ! ��

with

� � � �� � � � ½¾ � �

, and

� �¿ � �� < � � � � �

.
Continuing to Minkowski space

� * �

,

� �¿ ¥ ¦

.

� � *
�

� ! � ½¾ � & � ! � � �

One cannot avoid singularities!
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“One of One” says:

Singularities are futile.
You will be analytically continued.
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,

�
�

� � � * À
� � �

This amounts to treating

� �

as a complex variable.

We define coutour � � �� �

, along real-

� �

axis.
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,
2. Must deform the contour to avoid poles.
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Analytic Continuation Procedure

1. Replace integration over real
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with contour ,
2. Must deform the contour to avoid poles.

∆i 2

Im k

2/4 2−P
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Re k2

−µ

−µ 2
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Analytic Continuation Procedure

1. Replace integration over real
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2. Must deform the contour to avoid poles.
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Analytic Continuation Procedure

1. Replace integration over real
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with contour ,
2. Must deform the contour to avoid poles.
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,
2. Must deform the contour to avoid poles.

∆i 2

Im k

2/4 2−P

2

Re k2

−µ

−µ 2
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,
2. Must deform the contour to avoid poles.
3. Two pairs of quark poles 16 poles!
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,
2. Must deform the contour to avoid poles.
3. Two pairs of quark poles 16 poles!
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Analytic Continuation Procedure

1. Replace integration over real

� �

with contour ,
2. Must deform the contour to avoid poles.
3. Two pairs of quark poles 16 poles!
4. BSE is unique, continuous and real as

� * �

.
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3. Two pairs of quark poles 16 poles!
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Resolution: Analytic Continuation

Studies of DSEs and Lattice-QCD find quark propagators
may be sums of complex-conjugate poles or cuts.

We can explicitly continue results to Minkowski space.
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Studies of DSEs and Lattice-QCD find quark propagators
may be sums of complex-conjugate poles or cuts.

We can explicitly continue results to Minkowski space.

1. Method provides a unique solution for BSE.

2. Is practical for models, can be computed!

3. Enables careful study of connection between
Euclidean and Minkowski spaces.
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Resolution: Analytic Continuation

Studies of DSEs and Lattice-QCD find quark propagators
may be sums of complex-conjugate poles or cuts.

We can explicitly continue results to Minkowski space.

1. Method provides a unique solution for BSE.

2. Is practical for models, can be computed!

3. Enables careful study of connection between
Euclidean and Minkowski spaces.

4. Simple explanation of quark confinement.
Quark loops are real, imaginary parts cancel
term by term no quark production thresholds!
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Baryons in Dyson-Schwinger Framework

� A A A bound state covariant Faddeev Eq
Very complicated.
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Baryons in Dyson-Schwinger Framework

� A A A bound state covariant Faddeev Eq
Problem simplifies with two-quark correlations.�

Diquark correlations have no poles, yet
Á H H � <,ÃÂ Â .

Maris, FBS 32, 41 (2002)Ä Å #�Æ Ç #ÆÈ #È È� 9

0.740 0.880 –	 9

0.950 1.050 1.130	 G 1.470 1.530 1.64� G 1.500 – –
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Baryons in Dyson-Schwinger Framework

� A A A bound state covariant Faddeev Eq
Problem simplifies with two-quark correlations.�

Diquark correlations have no poles, yet
Á H H � <,ÃÂ Â .

Maris, FBS 32, 41 (2002)Ä Å #�Æ Ç #ÆÈ #È È� 9

0.740 0.880 –	 9

0.950 1.050 1.130	 G 1.470 1.530 1.64� G 1.500 – –

Estimate masses:
octet: 1.0 – 1.3 GeV
decuplet: 1.2 – 1.6 GeV
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Baryons in Dyson-Schwinger Framework

� A A A bound state covariant Faddeev Eq
Problem simplifies with two-quark correlations.�

Diquark correlations have no poles, yet
Á H H � <,ÃÂ Â .

Maris, FBS 32, 41 (2002)Ä Å #�Æ Ç #ÆÈ #È È� 9

0.740 0.880 –	 9

0.950 1.050 1.130	 G 1.470 1.530 1.64� G 1.500 – –É Correlation length
Á � 9 V 	 Q �

fm.
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� A A A bound state covariant Faddeev Eq
Problem simplifies with two-quark correlations.�

Diquark correlations have no poles, yet
Á H H � <,ÃÂ Â .

Maris, FBS 32, 41 (2002)Ä Å #�Æ Ç #ÆÈ #È È� 9

0.740 0.880 –	 9

0.950 1.050 1.130	 G 1.470 1.530 1.64� G 1.500 – –É Correlation length
Á � 9 V 	 Q �

fm.É Correlation length
Á < G V 	 Q 	 �

fm.
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Baryons in Dyson-Schwinger Framework

� A A A bound state covariant Faddeev Eq
Problem simplifies with two-quark correlations.�

Diquark correlations have no poles, yet
Á H H � <,ÃÂ Â .

Maris, FBS 32, 41 (2002)Ä Å #�Æ Ç #ÆÈ #È È� 9

0.740 0.880 –	 9

0.950 1.050 1.130	 G 1.470 1.530 1.64� G 1.500 – –É Correlation length
Á � 9 V 	 Q �

fm.É Correlation length
Á < G V 	 Q 	 �

fm.

? � 9
and

	 9

diquarks are dominant ?
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Faddeev Equation for Nucleon

�A X �Ê � �

4� �A X �Ê � � � * � � ���
�� �� � �A � � X � �� X �Ê � �

Ë� �� X �Ê � �
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Faddeev Equation for Nucleon

�A X �Ê � �

4� �A X �Ê � � � * � � ���
�� �� � �A � � X � �� X �Ê � �

Ë� �� X �Ê � �

nucleon wave functions:

�� X � � Ì < �� X � � ! ��" � * � " � Ì � �� X ��� � �� X � � ��Í < �� X � �] ��� �Í � �� X � �] � " � � � 
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Faddeev Equation for Nucleon

�A X �Ê � �

4� �A X �Ê � � � * � � ���
�� �� � �A � � X � �� X �Ê � �

Ë� �� X �Ê � �

and diquark correlations

� Î � � � 	
# �� Î

� �ÏQ # �� Î ��

< Î� � � � � + � � � �
# �< Î

	
# �< Î

� ��Q # �< Î � 


A and A A correlation lengths determine nucleon scales.
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Results from Faddeev Equation

© Ð

� 9

1.590 – 1.28� 9

&

	 9

0.940 1.230 0.25
Roberts, Hecht, et al.�

Including only scalar diquark:

There is no bound state.

� Ì �
Ì < � 	 
 �Ñ

Nucleon has large spinor “lower component”
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Results from Faddeev Equation

© Ð

� 9

1.590 – 1.28� 9

&

	 9

0.940 1.230 0.25
Roberts, Hecht, et al.�

Including both scalar and axial diquarks:

Allows for bound state of 1230 MeV.	 9

-attraction lowers nucleon mass by 40%!
� � 
 �Ò

Nucleon has more natural spinor components.
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Results from Faddeev Equation

© Ð

� 9

1.590 – 1.28� 9

&

	 9

0.940 1.230 0.25
Roberts, Hecht, et al.�

Including both scalar and axial diquarks:

Allows for bound state of 1230 MeV.	 9

-attraction lowers nucleon mass by 40%!
� � 
 �Ò

Nucleon has more natural spinor components.

Self-consistent, natural description of ,
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Nucleon EM Form Factors

The EM current of the nucleon is

Ä� � $� � � ! F WÊ � $� � � $� � Ê � �
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The EM current of the nucleon is

Ä� � $� � � ! F WÊ � $� � � $� � Ê � �
where

� � $� � � ��� < � �� 	
� Ó � � � � � �� 


Recent Advances in Dyson-Schwinger Studies – p.39/43



Nucleon EM Form Factors

The EM current of the nucleon is

Ä� � $� � � ! F WÊ � $� � � $� � Ê � �
where

� � $� � � ��� < � �� 	
� Ó � � � � � �� 


One defines Sachs form factors,

Ô � �Ï� � < � �Ï� *
�

� � � � �Ï��

: � ��� � < � ��� � � �� 
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Nucleon EM Form Factors

The EM current of the nucleon is

Ä� � $� � � ! F WÊ � $� � � $� � Ê � �
where

� � $� � � ��� < � �� 	
� Ó � � � � � �� 


One defines Sachs form factors,

Ô � �Ï� � < � �Ï� *
�

� � � � �Ï��

: � ��� � < � ��� � � �� 


Be careful to maintain current conservation!
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Current-Conservation in Nucleon

EM current conservation of nucleon is maintained when
photon couples to all objects with a sub-structure.
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Current-Conservation in Nucleon

impulse diagrams
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Current-Conservation in Nucleon
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Current-Conservation in Nucleon
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Resulting Nucleon Form Factors Ô � ��

Oettel, Pichowsky & Smekal, Eur.Phys.J. A8 251 (2000)
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Summary of Baryon Studies within Dyson-Schwinger

�

Approach used in meson sector useful for baryons.
Diquark scales come from

� �� �

, � � �� �
, 
 
 


Baryon scales come from

� �� �

, � � �� �
, 
 
 


Good scales go in, good scales come out.
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baryon spectroscopy
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Summary of Baryon Studies within Dyson-Schwinger

�

Approach used in meson sector useful for baryons.
Diquark scales come from

� �� �

, � � �� �
, 
 
 


Baryon scales come from

� �� �

, � � �� �
, 
 
 


Good scales go in, good scales come out.�

Recent and current studies:
baryon spectroscopy
baryon electromagnetic properties

and D electroproduction�

Dyson-Schwinger: baryons mesons.
necessary to provide real constraints on models
approach can provide real predictive power
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Summary

�

I gave brief overview of Dyson-Schwinger framework.
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Summary

�

I gave brief overview of Dyson-Schwinger framework.�

Four long-standing issues are being resolved.
1) How robust is the truncation scheme?

next-order corrections have little impact �, [

next-order corrections make diquarks unbound.

higher-order corrections... same conclusions.
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Summary

�

I gave brief overview of Dyson-Schwinger framework.�

Four long-standing issues are being resolved.
1) How robust is the truncation scheme?
2) How does analytic continuation really work?

We have carried out continuation explicitly.
Can carefully study Euclidean Minkowski.
Complex-conj quark poles lead to confinement.

Recent Advances in Dyson-Schwinger Studies – p.43/43



Summary

�

I gave brief overview of Dyson-Schwinger framework.�

Four long-standing issues are being resolved.
1) How robust is the truncation scheme?
2) How does analytic continuation really work?
3) How important are �-loop corrections?

�-loops provide 10% corrections to , �, [.
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Summary

�

I gave brief overview of Dyson-Schwinger framework.�

Four long-standing issues are being resolved.
1) How robust is the truncation scheme?
2) How does analytic continuation really work?
3) How important are �-loop corrections?
4) Studies of baryons are progressing nicely.

Baryon scales arise naturally from quark
propagator and gluon interaction, like mesons.
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