Baryon Resonances in Two Pion Electroproduction with the CLAS Detector at Jefferson LAB

M. Ripani – INFN Genova – Italy for the CLAS collaboration

NSTAR 2002, Pittsburgh, PA, October 8–12, 2002

Baryon properties are not limited to the spectrum

Experimental sources of information:

reactions induced by pions: $\pi N \rightarrow X$ $\pi N \rightarrow \pi N$ $\pi N \rightarrow \pi \pi N$ etc.

OR

pion photo- and electroproduction: $\gamma N \rightarrow N \pi$ e N \rightarrow e' π N

> Suggestion from <u>phenomenology</u>: increased multihadron coupling with increasing resonance mass

Looking at Particle Data from 1996

several N* resonances have strong B(N* \rightarrow N $\pi \pi$)

Res. L 2I 2J P	Mass (MeV)	Γ (MeV)	Β (Δπ) (%)	B(Nρ) (%)
P ₁₁ (1440) +	1430–1470	250 - 450	20 - 30	< 8
S ₃₁ (1620) -	1615–1675	120 - 180	30 - 60	7 – 25
D ₁₅ (1675) -	1670–1685	140 - 180	50 - 60	< 1-3
D ₃₃ (1700) -	1670–1770	200 - 400	30 - 60	30 - 55
P ₁₃ (1720) +	1650 - 1750	100 - 200	_	70 - 85
F ₃₅ (1905) +	1870–1920	280 - 440	< 25	> 60

Several models of baryon decays have been developed

R. Koniuk and N. Isgur,		Graz group,	
(pointlike coupling)		(Modified ³ P ₀ model)	
	S. Capstick and W. Roberts,	Stanc	u and Stassart,
	(Relativized ³ P ₀ model)	(flux	tube breaking)

Missing states :

Quark models predict decoupling from N π channel and coupling to N $\pi \pi$, N ω

	Res. N _{2J} (mass) P	Γ(Δπ) (MeV)	Г(рN) (MeV)	Γ(ωN) (MeV)
From S. Capstick and W. Roberts,	N ₁ (1880) +	80	5	25
Phys. Rev. D49, (1994) 4570 (Relativized ³ Po model)	N3(1910) +	300	10	70
()	N3(1950) +	60	15	40
	N ₁ (1975) +	20	6	10
	N ₅ (1980) +	240	5	8
	N ₃ (2030) +	50	8	10

Therefore,

it is important to investigate multihadron production channels, like for instance the double pion production <u>BUT</u> the probe cannot be a pion beam, as the coupling is expected to be very weak → electromagnetic probe

- •What about dynamical properties like transition probabilities ?
- Can we investigate properties like <u>space distributions of</u> <u>charge and spin</u>?

The electromagnetic interaction has the advantage of being

- weaker than strong interactions
- therefore calculable perturbatively
- based on the well- known QED

The scattering is normally analysed in term of the <u>One- Photon- Exchange approximation (OPE)</u>

In this picture, the virtual photon acts as the light in a microscope, with tunable wavelength such to allow investigation of a broad range of phenomena, from nuclear charge distributions to deep inelastic scattering

See: D. Drechsel, M.M. Giannini, Rep. Prog. Phys., 52, 1083(1989)
 S. Boffi et al., Physics Reports, 226 (vol. 1 & 2), 1(1993)

General aspects and issues in 2π calculations or fits

Unitarity:

in principle, only way is multichannel analysis in practice, wide use of theoretical or phenomenol. models where multichannel coupling is effective or missing

eff. Lagrangians vs Regge:

former is better suited for low energy latter is very powerful and economical for high energy In practice (our case) Regge not so bad even at low energy Maybe: physics foundation not solid but parametrisation good enough

> Regge is supposed to effectively include s-channel but this is true only for a full theory with all trajectories and presumably at W above 5-6 GeV In our case: Regge gives strength at forward angles, N* at all angles → visible at medium-large angles

Regarding PWA, one thing to bear in mind is that multiple pion production $(\Delta \pi, \rho, \omega)$ is generally producing VERY HIGH PARTIAL WAVES (think about diffractive vector meson production) traditionally, "standard" PWA effective with few PW \rightarrow models absolutely needed to guide analysis

TJNAF Experiments: 93–006 (M. Ripani–V.Burkert)	$e~N~\rightarrow~e^{*}~N\pi\pi$
93–033 (J.Napolitano et al.)	$\gamma {f p} \ ightarrow {f p} \ \pi^+ \ \pi^-$
94-109 (P. Cole et al.)	$\overrightarrow{\gamma} p \rightarrow p \ \rho^{_0}$

Possible contributing channels on **proton** are

$\gamma_{\rm V} {\bf p} \rightarrow {\bf p} \pi^+ \pi^-$	$\gamma_{V} n ightarrow n \; \pi + \pi -$
$n \pi + \pi^0$	$\mathbf{p} \ \pi - \pi 0$
ρ π ^υ π ^υ	$\mathbf{n} \pi 0 \pi 0$

on neutron

Each reaction can take place through **different intermediate processes**

e.g.

Focus concentrated on resonant contributions like

 $\gamma_V \hspace{0.1cm} p \hspace{0.5cm} \rightarrow \hspace{0.5cm} N^{*} \hspace{0.1cm} \rightarrow \hspace{0.1cm} \Delta^{++} \hspace{0.1cm} \pi^{-} \hspace{0.1cm} \rightarrow \hspace{0.1cm} p \hspace{0.1cm} \pi^{+} \hspace{0.1cm} \pi^{-}$

Data for photoproduction From ABBHHM bubble chamber in wide energy range
 Lots of data at W<1.5 GeV from DAPHNE and TAPS

> electroproduction data in the literature are very limited

Preliminary results from CLAS

Typical <u>electron luminosity</u> for first half of 1998 was a few 10³³ <u>DAQ rate</u> was about 500 events/sec In 1999 data taking was improved to about 10³⁴ <u>luminosity</u> and DAO rate 1500 events/sec

Overall data collection in 1999:

Electron scattering on Hydrogen target with polarised beam

Beam <u>energies</u>: 1.5, 2.5, 4.0, 4.2, 4.5, 5.5 GeV 3.6 billion triggers - half a billion electrons !!! Event reconstruction completed for all data sets

For <u>two pion production</u>, we will present data from 1999 (higher statistics)

Hadronic variables (our choice):

- direction Θ and $\Phi~$ for one particle
- invariant masses $M(p \pi^+)$, $M(\pi^+\pi^-)$
- azimuthal angle ψ of decay products

10 bins for s(p π^+), s($\pi^+\pi^-$) and Θ , 5 for the others \rightarrow total of about 25,000 hadronic bins

(plus binning in W, Q^2 , while electron φ is obviously integrated)

Data have been corrected in particular for:

- detector kinematic acceptance
- reconstruction efficiency
- electron radiation

Reaction identification: missing mass for $e~p \rightarrow e~p~\pi^+~(\pi^-)$

Virtual photon cross section

 $\sigma_V(W,Q^2)$ for $e \ p \rightarrow e \ p \ \pi^+ \ \pi^-$

CLAS data at <u>2.6 GeV</u> and <u>4.2 GeV</u> (1999)

Preliminary comparison with Genova- Moscow phenomenological model for two pion electroproduction

Input for <u>resonance photocouplings</u> A_{1/2}, A_{3/2} coming from V. Burkert fit based on experimental data + Single Quark Transition Model assumptions <u>Strong decay couplings</u> from M. Manley hadronic analysis

The 1.7 GeV bump was fitted in five different ways:
1) increasing the conventional D₁₃(1700) (red line)
2) increasing the conventional P11(1710) (green line)
3) modifying the conventional P₁₃(1720) (blue line)

The 1.7 GeV bump was fitted in three different ways:
4) fit A_{1/2-3/2} for all 3 conventional states (blue line)
5) introducing a <u>new</u> state: best fit by P₁₃ (red line) among many quantum numbers we tried

<u>Virtual photon cross section</u> $\sigma_V(W,Q^2)$ for e p \rightarrow e' p $\pi^+ \pi^-$ CLAS data at <u>2.6 GeV</u> and <u>4.2 GeV</u> (1999)

The 1.7 GeV bump was fitted in various ways: 3) increasing the conventional P₁₃(1720) (red line) 4) fit A_{1/2-3/2} for all 3 conventional states (blue line)

Results of our resonance analysis of the 1.7 GeV bump are:

1) the PDG D₁₃(1700) does not provid a good fit

2) the PDG P₁₁(1710) does not provid a good fit

3) the PDG P₁₃(1720) provides a good fit but with strong couplings substiantially different from PDG and recent literature (KSU, Pittsburgh multichannel fits)

4) fitting the photocouplings of all 3 states does not work, either

5) introducing a <u>new</u> P_{I3} allows to keep the PDG $P_{13}(1720)$ strong couplings at published values and provides a good fit

	Mass (MeV)	Γ (MeV)	B(Δπ) (%)	B (Nρ) (%)
our fit of PDG P ₁₃	1725 ± 20	$114\pm19\pm29$	$63\pm12\pm17$	$19\pm9\pm14$
PDG values	1650-1750	100 - 200	absent	70 – 85
new P ₁₃	1720 ± 20	$88 \pm 17 \pm 25$	$41\pm13\pm20$	$17\pm10\pm17$

	Q ² (GeV/c) ²	$\sqrt{A_{1/2}^2 + A_{3/2}^2}$ (10 ⁻³ GeV ^{-1/2})
our fit of PDG P ₁₃	0.65	83 ± 5
	0.95	63 ± 8
	1.3	45 ± 27
new P ₁₃	0.65	76 ± 9
	0.95	54 ± 7
	1.3	41 ±18

Conclusions and outlook

• Two pion electroproduction is connected to <u>basic</u> <u>properties of the baryon spectrum</u>: it allows to investigate poorly known states and search for "missing" (an hybrid) ones

structures in W now appearing in two pion channel, not visible in previous experiments

- <u>Resonance analysis performed using the</u> <u>Genova-Moscow isobar model that</u> containes resonances and background: first attempt to extract N* contribution !!
- <u>The bump at 1.7 GeV was reproduced in two different</u> <u>hypotheses:</u>

I) <u>Ordinary</u> P₁₃(1720) from PDG can fit the data <u>but with significant strong parameters changes</u>

II) A <u>new P₁₃ can equally well fit the data :</u> is it a missing state ? A hybrid ?