N* Focus Session Threshold Resonances

- S_{11} (1535) ~ ηN thresh (1487 MeV)
- $P_{11}(1440) \sim \pi\pi N$ thresh (1317 MeV)
- $\Lambda(1405) \sim \text{KN thresh} (1433 \text{ MeV})$
- Each reaction S-wave, ~attractive
- How to decide if qqq or mes-bar molec?
 - EM form factor (e.g. $A_{1/2}(Q^2)$ for $S_{11}(1535)$ flat => small (qqq)
 - Siggi Krewald (Effective Langrangian with coupled channels with microscopic nonres)
 - Can put in qqq or molec
 - Search for pole, better fit with or without res
 - Juan Nieves (chiral coup chan Lagrangian)
 - Can scat. data be fit with no qqq mechanism?
 - David Roberts, Frank Lee (quenched lattice QCD)
 - Can mass be calculated with qqq only?

present

- Effective Lagrangian, K-matrix, CMB *tentatively* identify these states as qqq (same as some quark models)
 - Need better data for $\gamma N \rightarrow \pi N$, $\pi \pi N$; $\pi N \rightarrow \pi \pi N$
 - Coupled channel has excellent flexibility
 - Is EM form factor a signal?
- Chiral Lagrangian fits data with molec.
 - Chiral effects important close to threshold
 - Only S-wave fit to total cross section
 - Use of coupled channels clever

• Lattice unclear

- State of art has chiral symmetry in quenched calc.
- Previous calcs had Roper, $\Lambda(1405)$ mass ~400 MeV high, but very recent Kentucky calc (Frank Lee) has sudden change in mass at m_{π}<400 GeV (Baysian!)
- But is it true mass?
 - Z graphs as with a_0 ?
 - Coupling to πN , $\pi \pi N$?

future

- Effective Lagrangrian
 - More data is coming
 - $pp \rightarrow pp \pi^+ \pi^-$ (WASA, Sweden)
 - $\pi N \rightarrow \pi \pi N (BNL)$
 - $\gamma N \rightarrow \pi \pi N$ (CLAS, Bonn)
 - Better constraints, use of symmetries
- Chiral Lagrangian
 - Hard to extend
- Lattice QCD
 - Must continue to analyze Ky results
 - $qqqq\overline{q}$ interp. op. "few years away"
 - Full QCD "few years away" (harder)
 - Full scattering simulation "at least 10 years away" Lütcher