Study of the Excited Baryon States at BES

Xiaoyan SHEN Representing BES Collaboration

Institute of High Energy Physics (IHEP) CAS, Beijing, P.R.China <u>shenxy@ihep.ac.cn</u>

> Oct. 8-12, 2002 N*2002, Pittsburgh, USA

Outline

- Introduction
- PWA results of $J/\psi \rightarrow p\overline{p}\eta$ (BESI)
- Preliminary studies of $J/\psi \rightarrow p \overline{n} \pi^-$ and $p \overline{p} K \pi$ (BESII)
- Mass plots of $J/\psi \rightarrow p\overline{p}\pi^0$ and $p\overline{p}\omega$ (BESII)
- Summary

The Beijing Electron Positron Collider

L ~ ~5 ×10³⁰ /cm²·s at J/ ψ peak E_{cm}~2-5 GeV

An unique e^+e^- machine in the world in the τ -charm energy region since 1989

BESII Detector

Data Collected with BESI and BESI

Detector	$E_{CM}(\text{GeV})$	Physics	Data Sample
	3.097	J/ψ	$7.8 imes 10^6$
	3.686	$\psi(2S)$	3.96×10^6
BES I	4.03	D_S, D	$22.3 pb^{-1}$
	$3.55, m_{\tau} \text{ scan}$	$m_{ au}$	$5pb^{-1}$
	2-5 GeV R scan	R, α_{QED} , g-2	6+85 points
	$\psi(2S)$ scan	res. para.	24 points
BESII	3.097	J/ψ	58×10^6
	$\psi^{\prime\prime}$ scan	res. para.	$\sim 2.2 pb^{-1}$
	3.686	$\psi(2S)$	$\sim 14 \times 10^6$

World J/ ψ and ψ (2S) Samples (10⁶)

Introduction to J/ψ Physics

3-gluon Electromagnetic Radiative Via η_c a good lab in studying hadron spectroscopy a good lab for excited baryon states hunting for glueballs in J/ ψ radiative decays

Study of Excited Baryon States

Motivation

- Probe the internal structure of light quark baryons
- Search for missing baryons predicted by quark model
- Obtain a better understanding of the strong interaction force in the non-perturbative regime

Experimental status

- the present knowledge came almost entirely
 from the old generation of πN experiments more
 than 20 years ago
 - Jefferson Lab. electro&photo-production exps. started some years ago CB-ELSA facility at Bonn University
 - SPRING8 in Japan
 - GRAAL at Grenoble of France started exps

relatively large branching ratios

processes	branching ratios(10-3)	N* decays
$J/\psi ightarrow p\overline{p}\pi^{\circ}$	2.0±0.1	$N^* \rightarrow \pi N$
$J/\psi \to p\overline{p}\pi^+\pi^-$	6.0±0.5	$N^* \rightarrow \pi^+ \pi^- N$
$J/\psi \to \overline{p}\pi^+ n$	2.0±0.1	$N^* \rightarrow \pi N$
$J/\psi \to p\overline{p}\eta$	2.1±0.2	$N^* \rightarrow \eta N$
$J/\psi \to p\overline{p}\eta'$	0.9±0.4	$N^* \rightarrow \eta' N$
$J/\psi \to p\overline{p}\omega$	1.3±0.3	$N^* \rightarrow \omega N$

Pure isospin 1/2

Feynman diagram of the production of $\overline{p}N^*, \overline{\Lambda}\Lambda^*, \overline{\Sigma}\Sigma^*, \overline{\Xi}\Xi^*$

For $J/\psi \rightarrow N\overline{N}\pi$ and $J/\psi \rightarrow N\overline{N}\pi\pi$, $N\pi\pi$ and $N\pi$ systems are limited to be pure isospin 1/2.

Introduction to PWA

construct amplitude A_i for i-th possible partial wave

$$A_{i} = A_{prod}^{i} \cdot A_{X}^{i} \cdot BW_{X}^{i} \cdot A_{decay}^{i}$$

differential cross section is:

$$\frac{d\sigma}{d\Phi} = \left|\sum_{i} A_{i}\right|^{2} + A_{bg}$$

• likelihood function $\ln L = \sum_{i=1}^{N} \ln(\frac{d\sigma}{d\Phi} / \sigma)$

maximum likelihood method

$J/\psi \to p \overline{p} \eta \,$ from BESI data

- two well known N* states found
 - N(1535)S₁₁: M = 1530 \pm 10 MeV/c² Γ = 95 \pm 25 MeV/c² PDG2002: M=1520~1555MeV/c² Γ = 100~200 MeV/c²

• N(1650)S₁₁: M = 1647 $\pm 20 \text{ MeV/c}^2$ $\Gamma = 145^{+80}_{-45} \text{ MeV/c}^2$ PDG2002: M=1640~1680MeV/c² $\Gamma = 145~190 \text{ MeV/c}^2$

$J/\psi \to p \overline{n} \pi^-$ from BESII data

Events selection

- 2 good charged tracks
- Q1+Q2 = 0
- |cosθ| < 0.85</p>
- PID: TOF and dE/dx
- Prob(χ², 1C) > 0.055
- 0.78 GeV < M_{missing} < 1.13 GeV</p>
- M_{pπ} > 1.13 GeV

- partial wave analysis is performed
- partial waves used in the fit:

N*(1440) (1/2+) N*(1520) (3/2-) N*(1535) (1/2-) N*(1650) (1/2-) N*(1675) (5/2-) N*(1680) (5/2+) N*(2020) (3/2+)

Where, N*(1440), N*(1520), N*(1535) and N*(1680) are significant.

Contribution of each component

1 1

scan of N*(1535) mass and width

- N*(1520)(3/2-) M = 1510 ±5 MeV/c² Γ = 110 ± 5 MeV/c² PDG2002: M=1515~1530MeV/c² Γ = 110~135 MeV/c²
- N*(1535)(1/2-) M = 1535 \pm 15 MeV/c² Γ = 170 \pm 20 MeV/c² PDG2002: M=1520~1555MeV/c² Γ = 100~200 MeV/c²

$J/\psi \rightarrow p\overline{p}K\pi$ from BESII data

Events selection

- 4 good charged tracks
- At least one $p(\overline{p})$
- χ²<20
- 0.35 GeV<M_K<0.65 GeV</p>

$J/\psi \rightarrow p\overline{p}K\pi$ from BESII data

BESII 58M (preliminary)

preliminary PWA show Λ(1520), Λ(1690) and Λ(1810) in pK mass

N* in KA mass

$J/\psi \rightarrow p\overline{p}\pi^0$ from BESII data

BESII 58M (preliminary)

PWA will be performed

$J/\psi \rightarrow \omega p \overline{p}$ from BESII data

907

3524

2.05

M(@p)(GEV/C²)

2.1

2

PWA will be performed

Summary

$J/\psi \rightarrow p\overline{p}\eta (BESI 7.8 M)$

two well known N* states found
N(1535)S₁₁: M = 1530 ±10 MeV/c², Γ = 95 ±25 MeV/c² N(1650)S₁₁: M = 1647 ±20 MeV/c², Γ = 145⁺⁸⁰₋₄₅ MeV/c²

Summary

$J/\psi \rightarrow p \overline{n} \pi^-$ (BESII preliminary)

Preliminary PWA to BESII 27M data show significant N*(1440), N*(1520), N*(1535) and N*(1680)
 PWA to BESII 58M data is in progress

$J/\psi \rightarrow p\overline{p} K\pi$ (BESII preliminary)

- preliminary PWA show Λ(1520), Λ(1690) and Λ(1810) in pK mass
 Nt* in KA mass
- N* in K∧ mass

Summary

PWA to BESII $J/\psi \rightarrow p\overline{p}\pi^0$ and $J/\psi \rightarrow p\overline{p}\omega$ will be performed soon.