QFT — assignment 2: the Photoelectric Effect

1. the photoelectric effect [Sakurai 2.4]

(i) Write the decay amplitude for the reaction $H_0\gamma \rightarrow e^-p$ where H_0 is the ground state of hydrogen. Assume that the outgoing electron is in a plane wave and that the proton is very heavy so that its recoil can be neglected.

(ii) Show that the differential cross section is

$$\frac{d\sigma}{d\Omega} = 32 \left(\frac{e^2}{4\pi\hbar c}\right) \left(\frac{\hbar}{mc}\right) \left(\frac{c}{\omega}\right) \frac{1}{(k_f a_0)^5} \frac{\sin^2\theta \cos^2\phi}{[1 - (v/c)\cos\theta]^4}.$$
 (1)

Assume that $a_0k_f \gg 1$ where a_0 is the Bohr radius and choose a coordinate system where the incident photon momentum is along \hat{z} and the polarisation is along \hat{x} .

2. hyperon decay [Sakurai 2.5]

The phenomenological interaction responsible for radiative hyperon decay, $\Sigma^0 \to \Lambda \gamma$, is taken to be

$$H_{int} = \frac{\kappa \hbar e}{(m_{\Lambda} + m_{\Sigma})c} \tau_{\Lambda\Sigma} \vec{\sigma} \cdot (\nabla \times \vec{A})|_{\vec{x}=0}, \qquad (2)$$

where $\tau_{\Lambda\Sigma}$ is an operator that converts a Σ^0 into a Λ , leaving the spin unchanged (both are spin 1/2 particles), and κ is a dimensionless coupling constant.

(i) Show that the angular distribution of the decay is isotropic, even if the Σ is polarised.

(ii) Determine the mean lifetime of the Σ in seconds. Take $\kappa = 1, m_{\Sigma} = 1.192$ GeV, and $m_{\Lambda} = 1.115$ GeV.