QFT2 — Assignment 3: QED

1. Møller Scattering

Compute the differential cross section for Møller scattering $(e^-e^- \rightarrow e^-e^-)$ in the centre of mass frame. Express your answer in terms of the energy E of one of the particles, the particle mass m, and the centre of mass scattering angle θ .

2. J/ψ decay constant

(i) The J/ψ is a charm-anticharm vector meson whose discovery confirmed the reality of quarks to many physicists. Define the J/ψ decay constant, f_{ψ} , via the relation

$$\langle \psi(p,\lambda) | \bar{c} \gamma_{\mu} c | 0 \rangle = f_{\psi} m_{\psi} \epsilon_{\mu}^{*}(p,\lambda)$$

where p and λ are the J/ψ 's four-momentum and polarisation respectively. Use this definition to compute the decay rate for $J/\psi \rightarrow e^+e^-$. Write your answer in terms of α , the charge of the charm quark (=Qe), the decay constant, and the J/ψ and electron's masses.

(ii) Use Q = 2/3, $m_{\psi} = 3.097$ GeV, and $\Gamma(\psi \to ee) = 5.39$ keV to obtain the decay constant.