4. Spontaneously Broken Field Theory

1. A Zeroth-order Natural Relation (Peskin and Schroeder, 11.2, plus some more)

We consider the O(2) linear sigma model coupled to fermions:

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi^{i})^{2} + \frac{1}{2} \mu^{2} (\phi^{i})^{2} - \frac{\lambda}{4} [(\phi^{i})^{2}]^{2} + \bar{\psi}(i \not\partial) \psi - g \bar{\psi}(\phi^{1} + i\gamma_{5}\phi^{2}) \psi.$$
(1)

(a) Show that the theory has the following global symmetry:

$$\begin{aligned}
\phi^1 &\to \cos \alpha \, \phi^1 - \sin \alpha \, \phi^2, \\
\phi^2 &\to \sin \alpha \, \phi^1 + \cos \alpha \, \phi^2, \\
\psi &\to e^{-i\alpha\gamma_5/2} \, \psi.
\end{aligned}$$
(2)

Show that the solution to the classical equations of motion with the minimum energy breaks this symmetry.

(b) Let $\phi^1 = v + \sigma(x)$ and $\phi^2 = \pi(x)$ and write out the complete Lagrangian in these new variables. Write out the complete counterterm Lagrangian. You should find 12 terms in \mathcal{L} and 14 terms in $\delta \mathcal{L}$. Show that the fermion acquires a mass $m_f = vg$ in the broken phase of the theory.

(c) Consider the one-loop radiative corrections to $m_f = vg$: choose renormalisation conditions such that v receives no radiative corrections at one-loop and g as defined by the $\bar{f}f\pi$ vertex also gets no radiative corrections at zero pion momentum. Show that m_f is no longer equal to vg (you may not have guessed this!). Also show that m_f is automatically ultraviolet finite at this order.

(d) Obtain explicit expressions for δ_g (the divergent part of the $ff\pi$ vertex) and for the finite correction to $m_f = vg$. You will find the discussion on pages 189-194 and Appendix A.4 useful.