N* Focus Session
Threshold Resonances

- $S_{11} (1535) \sim \eta N$ thresh (1487 MeV)
- $P_{11} (1440) \sim \pi\pi N$ thresh (1317 MeV)
- $\Lambda(1405) \sim K N$ thresh (1433 MeV)
- Each reaction S-wave, ~attractive
- How to decide if qqq or mes-bar molec?
 - EM form factor (e.g. $A_{1/2}(Q^2)$ for $S_{11}(1535)$ flat \Rightarrow small (qqq)
 - Siggi Krewald (Effective Langrangian with coupled channels with microscopic nonres)
 - Can put in qqq or molec
 - Search for pole, better fit with or without res
 - Juan Nieves (chiral coup chan Lagrangian)
 - Can scat. data be fit with no qqq mechanism?
 - David Roberts, Frank Lee (quenched lattice QCD)
 - Can mass be calculated with qqq only?
present

• Effective Lagrangian, K-matrix, CMB tentatively identify these states as qqq (same as some quark models)
 – Need better data for $\gamma N \rightarrow \pi N, \pi \pi N; \pi N \rightarrow \pi \pi N$
 – Coupled channel has excellent flexibility
 – Is EM form factor a signal?

• Chiral Lagrangian fits data with molec.
 – Chiral effects important close to threshold
 – Only S-wave fit to total cross section
 – Use of coupled channels clever

• Lattice unclear
 – State of art has chiral symmetry in quenched calc.
 – Previous calcs had Roper, $\Lambda(1405)$ mass ~ 400 MeV high, but very recent Kentucky calc (Frank Lee) has sudden change in mass at $m_\pi < 400$ GeV (Baysian!)
 – But is it true mass?
 • Z graphs as with a_0?
 • Coupling to $\pi N, \pi \pi N$?
future

- Effective Lagrangian
 - More data is coming
 - $pp \rightarrow pp\pi^+\pi^-$ (WASA, Sweden)
 - $\pi N \rightarrow \pi \pi N$ (BNL)
 - $\gamma N \rightarrow \pi \pi N$ (CLAS, Bonn)
 - Better constraints, use of symmetries
- Chiral Lagrangian
 - Hard to extend
- Lattice QCD
 - Must continue to analyze Ky results
 - $qqqq\bar{q}$ interp. op. “few years away”
 - Full QCD “few years away” (harder)
 - Full scattering simulation “at least 10 years away” Lütcher